
1. SPACE GROUPS AND THEIR SUBGROUPS

a ‘crystal family’ according to the following definition [for defi-

nitions that are also valid in higher-dimensional spaces, see

Brown et al. (1978) or IT A, Chapter 8.2]:

Definition 1.2.5.5.2. In three-dimensional space, the classification

of the set of all space groups into crystal families is the same as

that into crystal systems with the one exception that the trigonal

and hexagonal crystal systems are united to form the hexagonal

crystal family. There is no difference between crystal systems and

crystal families in the plane. &

The partition of the space groups into crystal families is the

most universal one. The space groups and their types, their crystal

classes and their crystal systems are classified by the crystal

families. Analogously, the crystallographic point groups and their

crystal classes and crystal systems are classified by the crystal

families of point groups. Lattices, their Bravais types and lattice

systems can also be classified into crystal families of lattices; cf. IT

A, Chapter 8.2.

1.2.6. Types of subgroups of space groups

1.2.6.1. Introductory remarks

Group–subgroup relations form an essential part of the

applications of space-group theory. Let G be a space group and

H<G a proper subgroup of G. All maximal subgroups H<G of
any space group G are listed in Part 2 of this volume. There are

different kinds of subgroups which are defined and described in

this section. The tables and graphs of this volume are arranged

according to these kinds of subgroups. Moreover, for the

different kinds of subgroups different data are listed in the sub-

group tables and graphs.

Let Gj and Hj be space groups of the space-group types G and

H. The group–subgroup relation Gj > Hj is a relation between

the particular space groups Gj andHj but it can be generalized to

the space-group types G and H. Certainly, not every space group

of the typeH will be a subgroup of every space group of the type

G. Nevertheless, the relation Gj > Hj holds for any space group of

G and H in the following sense: If Gj > Hj holds for the pair Gj

and Hj, then for any space group Gk of the type G a space group

Hk of the type H exists for which the corresponding relation

Gk > Hk holds. Conversely, for any space groupHm of the typeH

a space group Gm of the type G exists for which the corresponding

relation Gm > Hm holds. Only this property of the group–

subgroup relations made it possible to compile and arrange the

tables of this volume so that they are as concise as those of

IT A.

1.2.6.2. Definitions and examples

‘Maximal subgroups’ have been introduced by Definition

1.2.4.1.2. The importance of this definition will become apparent

in the corollary to Hermann’s theorem, cf. Lemma 1.2.8.1.3. In

this volume only the maximal subgroups are listed for any plane

and any space group. A maximal subgroup of a plane group is a

plane group, a maximal subgroup of a space group is a space

group. On the other hand, a minimal supergroup of a plane group

or of a space group is not necessarily a plane group or a space

group, cf. Section 2.1.6.

If the maximal subgroups are known for each space group,

then each non-maximal subgroup of a space group G with finite

index can in principle be obtained from the data on maximal

subgroups. A non-maximal subgroup H<G of finite index [i]

is connected with the original group G through a chain H ¼

Zk <Zk�1 < . . . <Z1 <Z0 ¼ G, where each group Z j <Zj�1 is

a maximal subgroup of Zj�1, with the index ½ij� ¼ jZ j�1 : Z jj,

j ¼ 1; . . . ; k. The number k is finite and the relation i ¼
Qk

j¼1 ij

holds, i.e. the total index [i] is the product of the indices ij.

According to Hermann (1929), the following types of sub-

groups of space groups have to be distinguished:

Definition 1.2.6.2.1. A subgroup H of a space group G is called a

translationengleiche subgroup or a t-subgroup of G if the set T ðGÞ

of translations is retained, i.e. T ðHÞ ¼ T ðGÞ, but the number of

cosets of G=T ðGÞ, i.e. the order P of the point group PG, is

reduced such that jG=T ðGÞj > jH=T ðHÞj.10 &

The order of a crystallographic point group PG of the space

group G is always finite. Therefore, the number of the subgroups

of PG is also always finite and these subgroups and their relations

are displayed in well known graphs, cf. Chapter 2.4 and Section

2.1.8 of this volume. Because of the isomorphism between the

point group PG and the factor group G=T ðGÞ, the subgroup graph

for the point group PG is the same as that for the t-subgroups of G,

only the labels of the groups are different. For deviations

between the point-group graphs and the actual space-group

graphs of Chapter 2.4, cf. Section 2.1.8.2.

Example 1.2.6.2.2

Consider a space group G of type P12=m1 referred to a

conventional coordinate system. The translation subgroup

T ðGÞ consists of all translations with translation vectors

t ¼ uaþ vbþ wc, where u; v; w run through all integer

numbers. The coset decomposition of ðG : T ðGÞÞ results in the

four cosets T (G), T ðGÞ 20, T ðGÞm0 and T ðGÞ 10, where the

right operations are a twofold rotation 20 around the rotation

axis passing through the origin, a reflectionm0 through a plane

containing the origin and an inversion 10 with the inversion

point at the origin, respectively. The three combinations

H1 ¼ T ðGÞ [ T ðGÞ 20, H2 ¼ T ðGÞ [ T ðGÞm0 and H3 ¼

T ðGÞ [ ðT GÞ 10 each form a translationengleiche maximal

subgroup of G of index 2 with the space-group symbols P121,

P1m1 and P1, respectively.

Definition 1.2.6.2.3. A subgroup H<G of a space group G is

called a klassengleiche subgroup or a k-subgroup if the set T (G)

of all translations of G is reduced to T ðHÞ< T ðGÞ but all linear
parts of G are retained. Then the number of cosets of the

decompositions H=T ðHÞ and G=T ðGÞ is the same, i.e.

jH=T ðHÞj ¼ jG=T ðGÞj. In other words: the order of the point

group PH is the same as that of PG. See also footnote 10. &

For a klassengleiche subgroup H<G, the cosets of the factor

groupH=T ðHÞ are smaller than those of G=T ðGÞ. Because T (H)
is still infinite, the number of elements of each coset is infinite but

the index jT ðGÞ : T ðHÞj > 1 is finite. The number of k-subgroups

of G is always infinite.

18

10 German: zellengleiche means ‘with the same cell’; translationengleiche means
‘with the same translations’; klassengleiche means ‘of the same (crystal) class’. Of
the different German declension endings only the form with terminal -e is used in
this volume. The terms zellengleiche and klassengleiche were introduced by
Hermann (1929). The term zellengleiche was later replaced by translationengleiche
because of possible misinterpretations. In this volume they are sometimes
abbreviated as t-subgroups and k-subgroups.

International Tables for Crystallography (2011). Vol. A1, Section 1.2.6, pp. 18–20.

Copyright © 2011 International Union of Crystallography

http://it.iucr.org/A1b/ch1o2v0001/sec1o2o6/


1.2. GENERAL INTRODUCTION TO THE SUBGROUPS OF SPACE GROUPS

Example 1.2.6.2.4

Consider a space group G of the type C121, referred to a

conventional coordinate system. The set T ðGÞ of all transla-

tions can be split into the set T i of all translations with integer

coefficients u, v and w and the set T f of all translations for

which the coefficients u and v are fractional. The set T i forms a

group; the set T f is the other coset in the decomposition

ðT ðGÞ : T iÞ and does not form a group. Let tC be the ‘centring

translation’ with the translation vector 1
2 ðaþ bÞ. Then T f can

be written T i tC. Let 20 mean a twofold rotation around the

rotation axis through the origin. There are altogether four

cosets of the decomposition (G : T i), which can be written now

as T i, T f ¼ T i tC, T i 20 and T f 20 ¼ ðT i tCÞ 20 ¼ T i ðtC 20Þ. The

union T i [ ðT i tCÞ ¼ T G forms the translationengleiche

maximal subgroup C1 (conventional setting P1) of G of index

2. The union T i [ ðT i 20Þ forms the klassengleiche maximal

subgroup P121 of G of index 2. The union T i [ ðT iðtC 20ÞÞ also

forms a klassengleiche maximal subgroup of index 2. Its HM

symbol is P1211, and the twofold rotations 2 of the point group

2 are realized by screw rotations 21 in this subgroup because

(tC 20) is a screw rotation with its screw axis running parallel to

the b axis through the point 1
4 ; 0; 0. There are in fact these two

k-subgroups of C121 of index 2 which have the group T i in

common. In the subgroup table of C121 both are listed under

the heading ‘Loss of centring translations’ because the

conventional unit cell is retained while only the centring

translations have disappeared. (Four additional klassengleiche

maximal subgroups of C121 with index 2 are found under the

heading ‘Enlarged unit cell’.)

The group T i of type P1 is a non-maximal subgroup of C121 of

index 4.

Definition 1.2.6.2.5. A klassengleiche or k-subgroup H<G is

called isomorphic or an isomorphic subgroup if it belongs to the

same affine space-group type (isomorphism type) as G. If a

subgroup is not isomorphic, it is sometimes called non-

isomorphic. &

Isomorphic subgroups are special k-subgroups. The impor-

tance of the distinction between k-subgroups in general and

isomorphic subgroups in particular stems from the fact that the

number of maximal non-isomorphic k-subgroups of any space

group is finite, whereas the number of maximal isomorphic

subgroups is always infinite, see Section 1.2.8.

Example 1.2.6.2.6

Consider a space group G of type P1 referred to a conventional

coordinate system. The translation subgroup T ðGÞ consists of

all translations with translation vectors t ¼ uaþ vbþ wc,

where u; v and w run through all integer numbers. There is an

inversion 10 with the inversion point at the origin and also an

infinite number of other inversions, generated by the combi-

nations of 10 with all translations of T ðGÞ.

We consider the subgroup T g of all translations with an even

coefficient u and arbitrary integers v and w as well as the coset

decomposition ðG : TgÞ. Let t a be the translation with the

translation vector a. There are four cosets: Tg, Tg t a, T g 10 and

Tgðt a 10Þ. The union T g [ ðT g t aÞ forms the translationengleiche

maximal subgroup T ðGÞ of index 2. The union T g [ ðT g 10Þ

forms an isomorphic maximal subgroup of index 2, as does the

union T g [ ðT g ðt a 10ÞÞ. There are thus two maximal isomorphic

subgroups of index 2 which are obtained by doubling the a

lattice parameter. There are altogether 14 isomorphic sub-

groups of index 2 for any space group of type P 1 which are

obtained by seven different cell enlargements.

If G belongs to a pair of enantiomorphic space-group types,

then the isomorphic subgroups of G may belong to different

crystallographic space-group types with different HM symbols

and different space-group numbers. In this case, an infinite

number of subgroups belong to the crystallographic space-group

type of G and another infinite number belong to the enantio-

morphic space-group type.

Example 1.2.6.2.7

Space group P41, No. 76, has for any prime number p > 2 an

isomorphic maximal subgroup of index p with the lattice

parameters a; b; pc. This is an infinite number of subgroups

because there is an infinite number of primes. The subgroups

belong to the space-group type P41 if p ¼ 4nþ 1; they belong

to the type P43 if p ¼ 4nþ 3.

Definition 1.2.6.2.8.A subgroup of a space group is called general

or a general subgroup if it is neither a translationengleiche nor a

klassengleiche subgroup. It has lost translations as well as linear

parts, i.e. point-group symmetry. &

Example 1.2.6.2.9

The subgroup T g in Example 1.2.6.2.6 has lost all inversions of

the original space group P1 as well as all translations with

odd u. It is a general subgroup P1 of the space group P1 of

index 4.

1.2.6.3. The role of normalizers for group–subgroup pairs of space
groups

In Section 1.2.4.5, the normalizer NGðHÞ of a subgroup H<G
in the group G was defined. The equationH / NGðHÞ � G holds,
i.e.H is a normal subgroup of NGðHÞ. The normalizer NGðHÞ, by

its index in G, determines the number Nj ¼ jG : NGðHÞj of
subgroups Hj <G that are conjugate in the group G, cf. Remarks

(2) and (3) below Definition 1.2.4.5.1.

The group–subgroup relations between space groups become

more transparent if one looks at them from a more general point

of view. Space groups are part of the general theory of mappings.

Particular groups are the affine group A of all reversible affine

mappings, the Euclidean group E of all isometries, the translation

group T of all translations and the orthogonal group O of all

orthogonal mappings.

Connected with any particular space group G are its group of

translations T ðGÞ and its point group PG. In addition, the

normalizers NAðGÞ of G in the affine group A and NEðGÞ in the

Euclidean group E are useful. They are listed in Section 15.2.1

of IT A. Although consisting of isometries only, NEðGÞ is not

necessarily a space group, see the second paragraph of Example

1.2.7.3.1.

For the group–subgroup pairs H<G the following relations

hold:

(1) T ðHÞ � H � NGðHÞ � G � NEðGÞ< E;
(1a) H � NGðHÞ � NEðHÞ< E;
(1b) NEðHÞ � NAðHÞ<A;

(2) T ðHÞ � T ðGÞ< T < E;
(3) T ðGÞ � G � NEðGÞ � NAðGÞ<A.

The subgroup H may be a translationengleiche or a klassen-

gleiche or a general subgroup of G. In any case, the normalizer

19



1. SPACE GROUPS AND THEIR SUBGROUPS

NGðHÞ determines the length of the conjugacy class ofH<G, but
it is not feasible to list for each group–subgroup pair H<G its

normalizer NGðHÞ. Indeed, it is only necessary to list for any

space group H its normalizer NEðHÞ in the Euclidean group E of

all isometries, as is done in IT A, Section 15.2.1. From such a list

the normalizers for the group–subgroup pairs can be obtained

easily, because for any chain of space groups H<G< E, the
relations H � NGðHÞ � G and H � NGðHÞ � NEðHÞ hold. The

normalizerNGðHÞ consists consequently of all those isometries of

NEðHÞ that are also elements of G, i.e. that belong to the inter-

section NEðHÞ \ G, cf. the examples of Section 1.2.7.11

The isomorphism type of the Euclidean normalizer NEðHÞ

may depend on the lattice parameters of the space group

(specialized Euclidean normalizer). For example, if the lattice

of the space group P1 of a triclinic crystal is accidentally mono-

clinic at a certain temperature and pressure or for a certain

composition in a continuous solid-solution series, then the

Euclidean normalizer of this space group belongs to the space-

group types P2=m or C2=m, otherwise it belongs to P1. Such a

specialized Euclidean normalizer (here P2=m or C2=m) may

be distinguished from the typical Euclidean normalizer (here

P1), for which the lattice of H is not more symmetric than is

required by the symmetry of H. The specialized Euclidean

normalizers were first listed in the 5th edition of IT A (2005),

Section 15.2.1.

1.2.7. Application to domain structures

1.2.7.1. Introductory remarks

In this section, the basic group-theoretical aspects of this

chapter are exemplified using the topic of domain structures

(transformation twins). Domain structures result from a displa-

cive or order–disorder phase transition. A homogeneous single

crystal phase A (parent or prototypic phase) is transformed to a

crystalline phase B (daughter phase, distorted phase). In most

cases phase B is inhomogeneous, consisting of homogeneous

regions which are called domains.

Definition 1.2.7.1.1. A connected homogeneous part of a domain

structure or of a twinned crystal of phase B is called a domain.

Each domain is a single crystal. The part of space that is occupied

by a domain is the region of that domain. &

The space groupsHj of phase B are conjugate subgroups of the

space group G of phase A,Hj <G. The number of domains is not

limited; they differ in their locations in space, in their orienta-

tions, in their sizes, in their shapes and in their space groups

Hj <G which, however, all belong to the same space-group type

H. The boundaries between the domains, called the domain walls,

are assumed to be (infinitely) thin.

A deeper discussion of domain structures or transformation

twins and their properties needs a much more detailed treatment,

as is given in Volume D of International Tables for Crystal-

lography (2003) (abbreviated as IT D) Part 3, by Janovec, Hahn

& Klapper (Chapter 3.2), by Hahn & Klapper (Chapter 3.3) and

by Janovec & Přı́vratská (Chapter 3.4) with more than 400

references. Domains are also considered in Section 1.6.6 of this

volume.

In this section, non-ferroelastic phase transitions are treated

without any special assumption as well as ferroelastic phase

transitions under the simplifying parent clamping approximation,

abbreviated PCA, introduced by Janovec et al. (1989), see also IT

D, Section 3.4.2.5. A transition is non-ferroelastic if the strain

tensors (metric tensors) of the low-symmetry phase B have the

same independent components as the strain tensor of the phase

A.12 There are thus no spontaneous strain components which

distort the lattices of the domains. In a ferroelastic phase transi-

tion the strain tensors of phase B have more independent

components than the strain tensor of phase A. The additional

strain components cause lattice strain. By the PCA the lattice

parameters of phase B at the transition are adapted to those of

phaseA, i.e. to the lattice symmetry of phaseA. Therefore, under

the PCA the ferroelastic phases display the same behaviour as

the non-ferroelastic phases.

If in this section ferroelastic phase transitions are considered,

the PCA is assumed to be applied.

Under a non-ferroelastic phase transition or under the

assumption of the PCA, the translations of the constituents of the

phase B are translations of phase A and the space groupsHj of B

are subgroups of the space group G of A, Hj <G.
Under this supposition the domain structure formed may

exhibit different chiralities and/or polarities of its domains with

different spatial orientations of their symmetry elements.

Nevertheless, each domain has the same specific energy and the

lattice of each domain is part of the lattice of the parent structure

A with space group G.

The description of domain structures by their crystal struc-

tures is called the microscopic description, IT D, Section 3.4.2.1.

In the continuum description, the crystals are treated as aniso-

tropic continua, IT D, Section 3.4.2.1. The role of the space

groups is then taken over by the point groups of the domains.

The continuum description is used when one is essentially

interested in the macroscopic physical properties of the domain

structure.

Different kinds of nomenclature are used in the discussion of

domain structures. The basic concepts of domain and domain

state are established in IT D, Section 3.4.2.1; the terms symmetry

state and directional state are newly introduced here in the

context of domain structures. All these concepts classify the

domains and will be defined in the next section and applied in

different examples of phase transitions in Section 1.2.7.3.

1.2.7.2. Domain states, symmetry states and directional states

In order to describe what happens in a phase transition of the

kind considered, a few notions are useful.

If the domains of phase B have been formed from a single

crystal of phase A, then they belong to a finite (small) number of

domain states Bj with space groups Hj. The domain states have

well defined relations to the original crystal of phase A and its

space group G. In order to describe these relations, the notion of

crystal pattern is used. Any perfect (ideal) crystal is a finite block

of the corresponding infinite arrangement, the symmetry of

which is a space group and thus contains translations. Here, this

20

11 For maximal subgroups, a calculation of the conjugacy classes is not necessary
because these are indicated in the subgroup tables of Part 2 of this volume by
braces to the left of the data sets for the low-index subgroups and by text for the
series of isomorphic subgroups. For non-maximal subgroups, the conjugacy
relations are not indicated but can be calculated in the way described here. They
are also available online on the Bilbao Crystallographic Server, http://www.
cryst.ehu.es/, under the program Subgroupgraph.

12 A phase transition is non-ferroelastic if the space groups G of the high-
symmetry phaseA andHj of the low-symmetry phase B belong to the same crystal
family, of which there are six: triclinic, monoclinic, orthorhombic, tetragonal,
trigonal–hexagonal and cubic. In ferroelastic phase transitions the space groups G
of A and Hj of B belong to different crystal families. Only then can spontaneous
strain components occur. They are avoided by the assumption of the PCA.
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