
1.4. THE MATHEMATICAL BACKGROUND OF THE SUBGROUP TABLES

maximal ðZ=pZÞR-submodules of LðRÞ=pLðRÞ. This gives an

algorithm for calculating these normal subgroups, which is

implemented in the package [CARAT].

The group G :¼ T =T p is an Abelian group, with the additional

property that for all g 2 G one has g p ¼ e. Such a group is called

an elementary Abelian p-group.

From the reasoning above we find the following lemma.

Lemma 1.4.4.2.6. LetM be a maximal k-subgroup of the space

group R. Then T =T ðMÞ is an elementary Abelian p-group for

some prime p. The order of T =T ðMÞ is pr with r � n. &

Corollary 1.4.4.2.7.Maximal subgroups of space groups are again

space groups and of finite index in the supergroup. &

Hence the first step is the determination of subgroups of R

that are maximal in T and normal in R, and is solved by linear-

algebra algorithms. These subgroups are the candidates for the

translation subgroups T ðMÞ for maximal k-subgroups M. But

even if one knows the isomorphism type ofM=T ðMÞ, the group
T ðMÞ does not in general determine M� R. Given such a

normal subgroup S / R that is contained in T , one now has to

find all maximal k-subgroups M� R with S ¼ T \M and

T M ¼ R. It might happen that there is no such groupM. This

case does not occur ifR is a symmorphic space group in the sense

of the following definition:

Definition 1.4.4.2.8. A space group R is called symmorphic if

there is a subgroup P � R such that P \ T ðRÞ ¼ I and

PT ðRÞ ¼ R. The subgroup P is called a complement of the

translation subgroup T ðRÞ. &

Note that the group P in the definition is isomorphic to

R=T ðRÞ and hence a finite group.

IfR is symmorphic and P � R is a complement of T , then one

may takeM :¼ SP.

This shows the following:

Lemma 1.4.4.2.9. Let R be a symmorphic space group with

translation subgroup T and T 1 � T an R-invariant subgroup of

T (i.e. T 1 / R). Then there is at least one k-subgroup U � R

with translation subgroup T 1. &

In any case, the maximal k-subgroups,M, of R satisfy

MT ¼ R and

M\ T ¼ S is a maximal R-invariant subgroup of T .

To find these maximal subgroups,M, one first chooses such a

subgroup S. It then suffices to compute in the finite group

R=S ¼: R. If there is a complementM of T ¼ T =S in R, then

every element x 2 R may be written uniquely as x ¼ mt with

m 2 M, t 2 T . In particular, any other complementM0 of T in

R is of the form M0
¼ fmtm j m 2 M; tm 2 T g. One computes

m1tm1
m2tm2

¼ m1m2ðm
�1
2 tm1

m2Þtm2
. Since M0 is a subgroup of

R, it holds that tm1m2
¼ ðm�12 tm1

m2Þtm2
. Moreover, every mapping

M! T ;m 7!tm with this property defines some maximal

subgroupM0 as above. Since M and T are finite, it is a finite

problem to find all such mappings.

If there is no such complementM, this means that there is no

(maximal) k-subgroupM of R withM\ T ¼ S.

1.4.5. Maximal subgroups

1.4.5.1. Maximal subgroups and primitive G-sets

To determine the maximal t-subgroups of a space group R,

essentially one has to calculate the maximal subgroups of the

finite groupR=T ðRÞ. There are fast algorithms to calculate these

maximal subgroups if this finite group is soluble (see Definition

1.4.5.2.1), which is the case for three-dimensional space groups.

To explain this method and obtain theoretical consequences for

the index of maximal subgroups in soluble space groups, we

consider abstract groups again in this section.

For an arbitrary group G, one has a fast method of checking

whether a given subgroup U � G of finite index ½G : U� is maximal

by inspection of the G-set G=U of left cosets of U in G. Assume

that U �M � G and letM=U :¼ fm1U; . . . ;mkUg withmi 2 M,

m1 ¼ e and G=M :¼ fg1M; . . . ; glMg with gi 2 G, g1 ¼ e. Then

the set G=U may be written as

G=U ¼ fg1m1U; . . . ; g1mkU;
g2m1U; . . . ; g2mkU;

..

.
; . . . ; ..

.
;

glm1U; . . . ; glmkUg

:

Then G permutes the lines of the rectangle above: For all g 2 G

and all j 2 f1; . . . ; lg, the left coset ggjM is equal to some gaM

for an a 2 f1; . . . ; lg. Hence the jth line is mapped onto the set

fggjm1U; . . . ; ggjmkUg ¼ fgam1U; . . . ; gamkUg:

Definition 1.4.5.1.1. Let G be a group and X a G-set.

(i) A congruence fS1; . . . ; Slg on X is a partition of X into

non-empty subsets X ¼ _[
l

i¼1Si such that for all x1; x2 2 Si,

g 2 G, gx1 2 Sj implies gx2 2 Sj .

(ii) The congruences fXg and ffxg j x 2 Xg are called the trivial

congruences.

(iii) X is called a primitive G-set if G is transitive on X, jXj > 1

and X has only the trivial congruences. &

Hence the considerations above have proven the following

lemma.

Lemma 1.4.5.1.2. LetM� G be a subgroup of the group G. Then

M is a maximal subgroup if and only if the G-set G=M is

primitive. &

The advantage of this point of view is that the groups G having

a faithful, primitive, finite G-set have a special structure. It will

turn out that this structure is very similar to the structure of space

groups.

If X is a G-set andN / G is a normal subgroup of G, then G acts

on the set of N -orbits on X, hence fN x j x 2 Xg is a congruence

on X. If X is a primitive G-set, then this congruence is trivial,

hence N x ¼ fxg or N x ¼ X for all x 2 X . This means that N

either acts trivially or transitively on X.
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1. SPACE GROUPS AND THEIR SUBGROUPS

One obtains the following:

Theorem 1.4.5.1.3. [Theorem of Galois (ca 1830).] Let H be a

finite group and let X be a faithful, primitive H-set. Assume that

feg 6¼ N / H is an Abelian normal subgroup. Then

(a) N is a minimal normal subgroup of H (i.e. for all N 1 / H,
N 1 � N , N 1 ¼ N or N 1 ¼ feg).

(b) N is an elementary Abelian p-group for some prime p and

jXj ¼ jN j is a prime power.

(c) CHðN Þ ¼ N and N is the unique minimal normal subgroup

of H. &

Proof. Let feg 6¼ N / H be an Abelian normal subgroup. Then

N acts faithfully and transitively on X. To establish a bijection

between the sets N and X, choose x 2 X and define

’ : N ! X; n 7!n � x. Since N is transitive, ’ is surjective. To

show the injectivity of ’, let n1; n2 2 N with ’ðn1Þ ¼ ’ðn2Þ. Then
n1 � x ¼ n2 � x, hence n�11 n2x ¼ x. But then n�11 n2 acts trivially on

X, because if y 2 X then the transitivity of N implies that there

is an n 2 N with n � x ¼ y. Then n�11 n2 � y ¼ n�11 n2n � x ¼

nn�11 n2 � x ¼ n � x ¼ y, since N is Abelian. Since X is a faithful

H-set, this implies n�11 n2 ¼ e and therefore n1 ¼ n2. This proves

jN j ¼ jXj. Since this equality holds for all nontrivial Abelian

normal subgroups of H, statement (a) follows. If p is some prime

dividing jN j, then the Sylow p-subgroup of N is normal in N ,

since N is Abelian. Therefore, it is also a characteristic subgroup

of N and hence a normal subgroup in H (see the remarks below

Definition 1.4.3.5.3). SinceN is a minimal normal subgroup ofH,

this implies that N is equal to its Sylow p-subgroup. Therefore,

the order of N is a prime power jN j ¼ pr for some prime p and

r 2 N. Similarly, the setN
p
:¼ fnp j n 2 N g is a normal subgroup

of H properly contained in N . Therefore, N
p
¼ feg and N is

elementary Abelian. This establishes (b).

To see that (c) holds, let g 2 CHðN Þ. Choose x 2 X. Then

g � x ¼ y 2 X . Since N acts transitively, there is an n 2 N such

that n � x ¼ y. Hence n�1g � x ¼ x. As above, let z 2 X be any

element of X. Then there is an element n1 2 N with z ¼ n1 � x.

Hence n�1g � z ¼ n�1gn1 � x ¼ n1n
�1g � x ¼ n1 � x ¼ z. Since z

was arbitrary and X is faithful, this implies that g ¼ n 2 N .

Therefore, CHðN Þ � N . Since N is Abelian, one has

N � CHðN Þ, hence N ¼ CHðN Þ. To see that N is unique, let

P 6¼ N be another normal subgroup of H. Since N is a minimal

normal subgroup, one has N \ P ¼ feg, and, therefore, for

p 2 P, n 2 N : n�1p�1np 2 N \ P ¼ feg. Hence P centralizes N ,

P � CHðN Þ ¼ N , which is a contradiction. QED

Hence the groupsH that satisfy the hypotheses of the theorem

of Galois are certain subgroups of an affine groupAnðZ=pZÞ over

a finite field Z=pZ. This affine group is defined in a way

similar to the affine group An over the real numbers where one

has to replace the real numbers by this finite field. Then N

is the translation subgroup of AnðZ=pZÞ isomorphic to the

n-dimensional vector space

ðZ=pZÞ
n
¼ fx ¼

x1

..

.

xn

0
B@

1
CA j x1; . . . ; xn 2 Z=pZg

over Z=pZ. The set X is the corresponding affine space

AnðZ=pZÞ. The factor group H ¼ H=N is isomorphic to a

subgroup of the linear group of ðZ=pZÞ
n that does not leave

invariant any nontrivial subspace of ðZ=pZÞ
n.

1.4.5.2. Soluble groups

Definition 1.4.5.2.1. Let G be a group. The derived series of G is

the series ðG0;G1; . . .Þ defined via G0 :¼ G, Gi :¼ hg
�1h�1gh j

g; h 2 Gi�1i. The group G1 is called the derived subgroup of G. The

group G is called soluble if Gn ¼ feg for some n 2 N. &

Remarks

(i) The Gi are characteristic subgroups of G.

(ii) G is Abelian if and only if G1 ¼ feg.

(iii) G1 is characterized as the smallest normal subgroup of G,

such that G=G1 is Abelian, in the sense that every normal

subgroup of G with an Abelian factor group contains G1.

(iv) Subgroups and factor groups of soluble groups are soluble.

(v) IfN / G is a normal subgroup, then G is soluble if and only if

G=N and N are both soluble.

Example 1.4.5.2.2

The derived series of Cyc2 � Sym4 is

Cyc2 � Sym4 .Alt4 . Cyc2 � Cyc2 . I

(or in Hermann–Mauguin notation m3m . 23 . 222 . 1) and

that of Cyc2 � Cyc2 � Sym3 is

Cyc2 � Cyc2 � Sym3 . Cyc3 . I

(Hermann–Mauguin notation: 6=mmm . 3 . 1).

Hence these two groups are soluble. (For an explanation of the

groups that occur here and later, see Section 1.4.3.6.)

Now let R � E3 be a three-dimensional space group. Then

T ðRÞ is an Abelian normal subgroup, hence T ðRÞ is soluble. The

factor group R=T ðRÞ is isomorphic to a subgroup of either

Cyc2 � Sym4 or Cyc2 � Cyc2 � Sym3 and therefore also soluble.

Using the remark above, one deduces that all three-dimensional

space groups are soluble.

Lemma 1.4.5.2.3. Let R be a three-dimensional space group.

Then R is soluble. &

1.4.5.3. Maximal subgroups of soluble groups

Now let G be a soluble group andM� G a maximal subgroup

of finite index in G. Then the set of left cosets X :¼ G=M is a

primitive finite G-set. Let K ¼ core ðMÞ be the kernel of the

action of G on X. Then the factor groupH :¼ G=K acts faithfully

on X. In particular, H is a finite group and X is a primitive,

faithful H-set. Since G is soluble, the factor group H is also a

soluble group. Let H . H1 . . . . . Hn�1 . feg be the derived

series ofH withN :¼ Hn�1 6¼ feg. ThenN is an Abelian normal

subgroup ofH. The theorem of Galois (Theorem 1.4.5.1.3) states

that N is an elementary Abelian p-group for some prime p and

jXj ¼ jN j ¼ pr for some r 2 N. Since X ¼ G=M, the order of X

is the index ½G :M� ofM in G. Therefore one gets the following

theorem:

Theorem 1.4.5.3.1. If M� G is a maximal subgroup of finite

index in the soluble group G, then its index jG=Mj is a prime

power. &

In the proof of Theorem 1.4.5.1.3, we have established a

bijection between N and the H-set X, which is now X :¼ G=M.

Taking the full pre-image
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