International
Tables for
Crystallography
Volume A1
Symmetry relations between space groups
Edited by Hans Wondratschek and Ulrich Müller

International Tables for Crystallography (2011). Vol. A1, ch. 1.6, pp. 44-56
https://doi.org/10.1107/97809553602060000795

Chapter 1.6. Relating crystal structures by group–subgroup relations

Ulrich Müllera*

aFachbereich Chemie, Philipps-Universität, D-35032 Marburg, Germany
Correspondence e-mail: mueller@chemie.uni-marburg.de

References

Aizu, K. (1970). Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys Rev. B, 2, 754–772.
Aroyo, M. I. & Perez-Mato, J. M. (1998). Symmetry-mode analysis of displacive phase transitions using International Tables for Crystallography. Acta Cryst. A54, 19–30.
Bärnighausen, H. (1975). Group–subgroup relations between space groups as an ordering principle in crystal chemistry: the `family tree' of perovskite-like structures. Acta Cryst. A31, part S3, 01.1–9.
Bärnighausen, H. (1980). Group–subgroup relations between space groups: a useful tool in crystal chemistry. MATCH Commun. Math. Chem. 9, 139–175.
Baur, W. H. (1994). Rutile type derivatives. Z. Kristallogr. 209, 143–150.
Baur, W. H. (2007). The rutile type and its derivatives. Crystallogr. Rev. 13, 65–113.
Baur, W. H. & Fischer, R. X. (2000, 2002, 2006). Landolt–Börnstein, Numerical data and functional relationships in science and technology, New Series. Group IV, Vol. 14, Zeolite type crystal structures and their chemistry. Berlin: Springer.
Baur, W. H. & McLarnan, T. J. (1982). Observed wurtzite derivatives and related tetrahedral structures. J. Solid State Chem. 42, 300–321.
Becht, H. Y. & Struikmans, R. (1976). A monoclinic high-temperature modification of potassium carbonate. Acta Cryst. B32, 3344–3346.
Bernal, J. D. (1938). Conduction in solids and diffusion and chemical change in solids. Geometrical factors in reactions involving solids. Trans. Faraday Soc. 34, 834–839.
Bernal, J. D. & Mackay, A. L. (1965). Topotaxy. Tschermaks mineralog. petrogr. Mitt., Reihe 3 (now Mineral. Petrol.), 10, 331–340.
Billiet, Y. (1973). Les sous-groupes isosymboliques des groupes spatiaux. Bull. Soc. Fr. Minéral. Cristallogr. 96, 327–334.
Binder, K. (1987). Theory of first-order phase transitions. Rep. Prog. Phys. 50, 783–859.
Birman, J. L. (1966a). Full group and subgroup methods in crystal physics. Phys. Rev. 150, 771–782.
Birman, J. L. (1966b). Simplified theory of symmetry change in second-order phase transitions: application to V3Si. Phys. Rev. Lett. 17, 1216–1219.
Birman, J. L. (1978). Group-theoretical methods in physics, edited by P. Kramer & A. Rieckers, pp. 203–222. New York: Springer.
Bock, O. & Müller, U. (2002a). Symmetrieverwandtschaften bei Varianten des Perowskit-Typs. Acta Cryst. B58, 594–606.
Bock, O. & Müller, U. (2002b). Symmetrieverwandtschaften bei Varianten des ReO[_3]-Typs. Z. Anorg. Allg. Chem. 628, 987–992.
Brostigen, G. & Kjeskhus, G. A. (1969). Redetermined crystal structure of FeS2 (pyrite). Acta Chem. Scand. 23, 2186–2188.
Brunner, G. O. (1971). An unconventional view of the `closest sphere packings'. Acta Cryst. A27, 388–390.
Buerger, M. J. (1947). Derivative crystal structures. J. Chem.Phys. 15, 1–16.
Buerger, M. J. (1951). Phase transformations in solids, ch. 6. New York: Wiley.
Byström, A., Hök, B. & Mason, B. (1941). The crystal structure of zinc metaantimonate and similar compounds. Ark. Kemi Mineral. Geol. 15B, 1–8.
Capillas, C., Perez-Mato, J. M. & Aroyo, M. I. (2007). Maximal symmetry transition paths for reconstructive phase transitions. J. Phys. Condens. Matter, 19, 275203.
Chaitkin, P. M. & Lubensky, T. C. (1995). Principles of Condensed Matter Physics (reprints 2000, 2003). Cambridge University Press.
Chandra Shekar, N. V. & Gavinda Rajan, K. (2001). Kinetics of pressure induced structural phase transitions – a review. Bull. Mater. Sci. 24, 1–21.
Chapuis, G. C. (1992). Symmetry relationships between crystal structures and their practical applications. Modern Perspectives in Inorganic Chemistry, edited by E. Parthé, pp. 1–16. Dordrecht: Kluwer Academic Publishers.
Christian, J. W. (2002). The Theory of Transformations in Metals and Alloys, 3rd ed. Oxford: Pergamon.
Cracknell, A. P. (1975). Group Theory in Solid State Physics. New York: Taylor and Francis Ltd/Pergamon.
Di Costanzo, L., Forneris, F., Geremia, S. & Randaccio, L. (2003). Phasing protein structures using the group–subgroup relation. Acta Cryst. D59, 1435–1439.
Doherty, R. D. (1996). Diffusive phase transformations. Physical Metal­lurgy, ch. 15. Amsterdam: Elsevier.
Entner, P. & Parthé, E. (1973). PtGeSe with cobaltite structure, a ternary variant of the pyrite structure. Acta Cryst. B29, 1557–1560.
Ercit, T. S., Foord, E. E. & Fitzpatrick, J. J. (2001). Ordoñezite from the Theodoso Soto mine, Mexico: new data and structure refinement. Can. Mineral. 40, 1207–1210.
Flack, H. D. (2003). Chiral and achiral structures. Helv. Chim. Acta, 86, 905–921.
Foecker, A. J. & Jeitschko, W. (2001). The atomic order of the pnictogen and chalcogen atoms in equiatomic ternary compounds TPnCh (T = Ni, Pd; Pn = P, As, Sb; Ch = S, Se, Te). J. Solid State Chem. 162, 69–78.
Giovanoli, D. & Leuenberger, U. (1969). Über die Oxidation von Manganoxidhydroxid. Helv. Chim. Acta, 52, 2333–2347.
Grønvold, F. & Røst, E. (1957). The crystal structure of PdSe2 and PdS2. Acta. Cryst. 10, 329–331.
Gunton, J. D. (1984). The dynamics of random interfaces in phase transitions. J. Stat. Phys. 34, 1019–1037.
Herbstein, F. H. (2006). On the mechanism of some first-order enantiotropic solid-state phase transitions: from Simon through Ubbelohde to Mnyukh. Acta Cryst. B62, 341–383.
Hoffmann, W. & Jäniche, W. (1935). Der Strukturtyp von AlB2. Naturwissenschaften, 23, 851.
Howard, C. J. & Stokes, H. T. (2005). Structures and phase transitions in perovskites – a group-theoretical approach. Acta Cryst. A61, 93–111.
Iandelli, A. (1964). MX2-Verbindungen der Erdalkali- und seltenen Erdmetalle mit Gallium, Indium und Thallium. Z. Anorg. Allg. Chem. 330, 221–232.
Igartua, J. M., Aroyo, M. I. & Perez-Mato, J. M. (1996). Systematic search of materials with high-temperature structural phase transitions: Application to space group P212121. Phys. Rev. B, 54, 12744–12752.
International Tables for Crystallography (2005). Vol. A, Space-Group Symmetry, edited by Th. Hahn, corrected reprint of 5th ed. Dordrecht: Kluwer Academic Publishers.
Izyumov, Y. A. & Syromyatnikov, V. N. (1990). Phase Transitions and Crystal Symmetry. Dordrecht: Kluwer Academic Publishers.
Janovec, V. & Přívratská, J. (2003). Domain structures. International Tables for Crystallography, Vol. D, Physical Properties of Crystals, edited by A. Authier, ch. 3.4. Dordrecht: Kluwer Academic Publishers.
Jansen, M. & Feldmann, C. (2000). Strukturverwandtschaften zwischen cis-Natriumhyponitrit und den Alkalimetallcarbonaten M2CO3 dar­gestellt durch Gruppe-Untergruppe Beziehungen. Z. Kristallogr. 215, 343–345.
Jena, A. K. & Chaturvedi, M. C. (1992). Phase Transformations in Materials. Englewood Cliffs: Prentice Hall.
Jørgenson, J.-E. & Smith, R. I. (2006). On the compression mechanism of FeF3. Acta Cryst. B62, 987–992.
Koch, E. & Fischer, W. (2006). Normalizers of space groups: a useful tool in crystal description, comparison and determination. Z. Kristallogr. 221, 1–14.
Landau, L. D. & Lifshitz, E. M. (1980). Statistical Physics, 3rd ed., Part 1, pp. 459–471. London: Pergamon. (Russian: Statisticheskaya Fizika, chast 1. Moskva: Nauka, 1976; German: Lehrbuch der theoretischen Physik, 6. Aufl., Bd. 5, Teil 1, S. 436–447. Berlin: Akademie-Verlag, 1984.)
Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. & Parthé, E. (1990). Nomenclature of inorganic structure types. Report of the International Union of Crystallography Commission on Crystallographic Nomenclature Subcommittee on the Nomenclature of Inorganic Structure Types. Acta Cryst. A46, 1–11.
Lotgering, F. K. (1959). Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures – I. J. Inorg. Nucl. Chem. 9, 113–123.
Lyubarskii, G. Ya. (1960). Group Theory and its Applications in Physics. London: Pergamon. (Russian: Teoriya grupp i ee primenenie v fizike. Moskva: Gostekhnizdat, 1957; German: Anwendungen der Gruppentheorie in der Physik. Berlin: Deutscher Verlag der Wissenschaften, 1962.)
McLarnan, T. J. (1981a). Mathematical tools for counting polytypes. Z. Kristallogr. 155, 227–245.
McLarnan, T. J. (1981b). The numbers of polytypes in close packings and related structures. Z. Kristallogr. 155, 269–291.
McLarnan, T. J. (1981c). The combinatorics of cation-deficient close-packed structures. J. Solid State Chem. 26, 235–244.
McMahon, M. I., Nelmes, R. J., Wright, N. G. & Allan, D. R. (1994). Pressure dependence of the Imma phase of silicon. Phys. Rev. B, 50, 739–743.
Megaw, H. D. (1973). Crystal Structures: A Working Approach. Philadelphia: Saunders.
Meyer, A. (1981). Symmmetriebeziehungen zwischen Kristallstrukturen des Formeltyps AX2, ABX4 und AB2X6 sowie deren Ordnungs- und Leerstellenvarianten. Dissertation, Universität Karlsruhe.
Müller, U. (1978). Strukturmöglichkeiten für Pentahalogenide mit Doppeloktaeder-Molekülen (MX5)2 bei dichtester Packung der Halogen­atome. Acta Cryst. A34, 256–267.
Müller, U. (1980). Strukturverwandtschaften unter den EPh[_4^+]-Salzen. Acta Cryst. B36, 1075–1081.
Müller, U. (1981). MX[_4]-Ketten aus kantenverknüpften Oktaedern: mögliche Kettenkonfigurationen und mögliche Kristallstrukturen. Acta Cryst. B37, 532–545.
Müller, U. (1986). MX[_5]-Ketten aus eckenverknüpften Oktaedern. Mögliche Kettenkonfigurationen und mögliche Kristallstrukturen bei dichtester Packung der X-Atome. Acta Cryst. B42, 557–564.
Müller, U. (1992). Berechnung der Anzahl möglicher Strukturtypen für Verbindungen mit dichtest gepackter Anionenteilstruktur. I. Das Rechenverfahren. Acta Cryst. B48, 172–178.
Müller, U. (1998). Strukturverwandtschaften zwischen trigonalen Verbindungen mit hexagonal-dichtester Anionenteilstruktur und besetzten Oktaederlücken. Z. Anorg. Allg. Chem. 624, 529–532.
Müller, U. (2004). Kristallographische Gruppe-Untergruppe-Beziehungen und ihre Anwendung in der Kristallchemie. Z. Anorg. Allg. Chem. 630, 1519–1537.
Müller, U. (2006). Inorganic Structural Chemistry, 2nd ed., pp. 212–225. Chichester: Wiley. (German: Anorganische Strukturchemie, 6. Aufl., 2008, S. 308–327. Wiesbaden: Teubner.)
Nielsen, J. W. & Baenziger, N. C. (1953). The crystal structures of ZrBeSi and ZrBe2. US Atom. Energy Comm. Rep. pp. 1–5.
Nielsen, J. W. & Baenziger, N. C. (1954). The crystal structures of ZrBeSi and ZrBe2. Acta Cryst. 7, 132–133.
Pöttgen, R. & Hoffmann, R.-D. (2001). AlB[_2]-related intermetallic compounds – a comprehensive view based on a group–subgroup scheme. Z. Kristallogr. 216, 127–145.
Ramsdell, L. D. (1925). The crystal structure of some metallic sulfides. Am. Mineral. 10, 281–304.
Salje, E. K. H. (1990). Phase transitions in ferroelastic and co-elastic crystals. Cambridge University Press.
Sens, I. & Müller, U. (2003). Die Zahl der Substitutions- und Leerstellenvarianten des NaCl-Typs bei verdoppleter Elementarzelle (a, b, 2c). Z. Anorg. Allg. Chem. 629, 487–492.
Sowa, H. & Ahsbahs, H. (1998). Pressure-induced octahedron strain in VF3 type compounds. Acta Cryst. B54, 578–584.
Steger, J. J., Nahigian, H., Arnott, R. J. & Wold, A. (1974). Preparation and characterization of the solid solution series Co1−xNixS (0 < x < 1). J. Solid State Chem. 11, 53–59.
Stokes, H. T. & Hatch, D. M. (1988). Isotropy Subgroups of the 230 Crystallographic Space Groups. Singapore: World Scientific.
Swainson, I. P., Cove, M. T. & Harris, M. J. (1995). Neutron powder diffraction study of the ferroelastic phase transition and lattice melting of sodium carbonate. J. Phys. Condens. Matter, 7, 4395–4417.
Tendeloo, G. van & Amelinckx, S. (1974). Group-theoretical considerations concerning domain formation in ordered alloys. Acta Cryst. A30, 431–440.
Tolédano, J.-C. & Tolédano, P. (1987). The Landau Theory of Phase Transitions. Singapore: World Scientific.
Wayman, C. M. & Bhadeshia, H. K. (1996). Nondiffusive phase transformations. Physical Metallurgy, 4th ed., edited by R. W. Cahn & P. Haasen, ch. 16. Amsterdam: Elsevier.
Wendorff, M. & Roehr, C. (2005). Reaktionen von Zink- und Cadmiumhalogeniden mit Tris(trimethylsilyl)phosphan und Tris(trimethylsilyl)arsan. Z. Anorg. Allg. Chem. 631, 338–349.
Wondratschek, H. & Jeitschko, W. (1976). Twin domains and antiphase domains. Acta Cryst. A32, 664–666.