International Tables for Crystallography (2011). Vol. A1, ch. 2.1, pp. 72-96   | 1 | 2 |
https://doi.org/10.1107/97809553602060000797

Chapter 2.1. Guide to the subgroup tables and graphs

Chapter index

additional centring translations 2.1.2.4, 2.1.6.3
affine normalizers 2.1.7.4
applications of group–subgroup graphs 2.1.8.5
augmented matrix 2.1.3.3
basis transformation 2.1.3.3, 2.1.3.3, 2.1.5.2
centring translations
additional 2.1.2.4, 2.1.6.3
loss of 2.1.2.4, 2.1.4.2
choice of origin 2.1.2.3, 2.1.2.5.2, 2.1.5.5.3
common supergroup 2.1.7.2
complete graph of group–subgroup relations 2.1.8.2, 2.1.8.5
conjugate subgroups 2.1.2.4, 2.1.3.2, 2.1.3.3, 2.1.5.3
contracted graph of group–subgroup relations 2.1.8.1, 2.1.8.5
coordinate system
transformation of 2.1.3.3, 2.1.3.3
coset representatives 2.1.2.2.2
decreased unit cell 2.1.2.4, 2.1.6.3
enlarged unit cell 2.1.2.4, 2.1.4.3
extraordinary orbit 2.1.8.5
general position 2.1.2.2.2
general supergroup 2.1.6.1
generators 2.1.2.2.1, 2.1.5.4
graphs of group–subgroup relations 2.1.8
applications 2.1.8.5
complete 2.1.8.2, 2.1.8.5
contracted 2.1.8.1, 2.1.8.5
for klassengleiche subgroups 2.1.8.3
for plane groups 2.1.8.4
for translationengleiche subgroups 2.1.8.2
headline 2.1.2.1
Hermann, theorem of 2.1.6.1
Hermann's group 2.1.8.5
Hermann–Mauguin (HM) symbols 2.1.2.1
hexagonal axes 2.1.2.3, 2.1.2.5.3, 2.1.5.5.2
index of a subgroup 2.1.5.1, 2.1.8.2
restrictions for 2.1.8.3
index of a supergroup 2.1.6.1, 2.1.7.3
international symbols 2.1.2.1
isomorphic subgroups 2.1.5, 2.1.8.3
series of 2.1.2.4, 2.1.5
isomorphic supergroups 2.1.6.1
klassengleiche (k-) subgroups 2.1.4
klassengleiche (k-) supergroups 2.1.6.1, 2.1.6.3, 2.1.7.1
loss of centring translations 2.1.2.4, 2.1.4.2
matrix
augmented 2.1.3.3
transformation 2.1.3.3, 2.1.3.3
matrix–column pair 2.1.3.3
minimal supergroups 2.1.6.1, 2.1.7, 2.1.7.2, 2.1.7.3, 2.1.7.4
monoclinic axis 2.1.2.3
monoclinic space groups, symbols of 2.1.2.3
monoclinic subgroups, settings of 2.1.2.5.1
normalizers
affine 2.1.7.4
orbit
extraordinary 2.1.8.5
order of listed subgroups 2.1.2.4
origin choice 2.1.2.3, 2.1.2.5.2, 2.1.5.5.3
origin shift 2.1.3.3, 2.1.5.3
points, symmetry-equivalent 2.1.2.2.2
position
general 2.1.2.2.2
potassium trifluoridocuprate (KCuF3) 2.1.8.5
restrictions for indices 2.1.8.3
rhombohedral axes 2.1.2.3, 2.1.2.5.3, 2.1.5.5.2
rhombohedral space groups 2.1.2.5.3
Schoenflies symbols 2.1.2.1
sequence of listed subgroups 2.1.2.4, 2.1.4.3
series of isomorphic subgroups 2.1.2.4, 2.1.5
settings of monoclinic subgroups 2.1.2.5.1
settings of rhombohedral subgroups 2.1.2.5.3
space-group number 2.1.2.1
space groups
rhombohedral 2.1.2.5.3
strontium titanate (SrTiO3) 2.1.8.5
subgroup graphs 2.1.8
subgroups
index of 2.1.5.1, 2.1.8.2
isomorphic 2.1.5, 2.1.8.3
klassengleiche 2.1.4
sequence of listing 2.1.4.3
setting of 2.1.2.5
translationengleiche 2.1.3, 2.1.8.2
supergroups 2.1.6.1
common 2.1.7.2
derivation of 2.1.7.4
general 2.1.6.1
index of 2.1.6.1, 2.1.7.3
isomorphic 2.1.6.1
klassengleiche 2.1.6.1, 2.1.6.3, 2.1.7.1
translationengleiche 2.1.6.1, 2.1.6.2, 2.1.7.3, 2.1.7.4
symbols
Hermann–Mauguin (HM) 2.1.2.1
international 2.1.2.1
monoclinic space groups 2.1.2.3
Schoenflies 2.1.2.1
symmetry-equivalent points 2.1.2.2.2
theorems
Hermann's theorem 2.1.6.1
transformation matrix 2.1.3.3
transformation of basis 2.1.3.3, 2.1.3.3, 2.1.5.2
transformation of coordinate system 2.1.3.3, 2.1.3.3
translationengleiche (t-) subgroups 2.1.3, 2.1.8.2
translationengleiche (t-) supergroups 2.1.6.1, 2.1.6.2, 2.1.7.3, 2.1.7.4
unit cell
decreased 2.1.2.4, 2.1.6.3
enlarged 2.1.2.4, 2.1.4.3