p2mm No. 6 p2mm

Generators selected (1); t(1, 0); t(0, 1); (2); (3)

General position

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates

 4 i 1
 (1) x, y (2) -x, -y (3) -x, y (4) x, -y

I Maximal translationengleiche subgroups

 [2] p1m1 (3, pm) 1; 3 [2] p11m (3, pm) 1; 4 b, -a [2] p211 (2, p2) 1; 2

II Maximal klassengleiche subgroups

• Enlarged unit cell

[2] a' = 2a

 p2mg (7) <2; 3 + (1, 0)> 2a, b p2mg (7) <3; 2 + (1, 0)> 2a, b 1/2, 0 p2mm (6) <2; 3> 2a, b p2mm (6) <(2; 3) + (1, 0)> 2a, b 1/2, 0

[2] b' = 2b

 p2gm (7, p2mg) <2; 3 + (0, 1)> 2b, -a p2gm (7, p2mg) <(2; 3) + (0, 1)> 2b, -a 0, 1/2 p2mm (6) <2; 3> a, 2b p2mm (6) <3; 2 + (0, 1)> a, 2b 0, 1/2

[2] a' = 2a, b' = 2b

 c2mm (9) <2; 3> 2a, 2b c2mm (9) <3; 2 + (0, 1)> 2a, 2b 0, 1/2 c2mm (9) <(2; 3) + (1, 0)> 2a, 2b 1/2, 0 c2mm (9) <2 + (1, 1); 3 + (1, 0)> 2a, 2b 1/2, 1/2

[3] a' = 3a

 p2mm (6) <2; 3> 3a, b p2mm (6) <(2; 3) + (2, 0)> 3a, b 1, 0 p2mm (6) <(2; 3) + (4, 0)> 3a, b 2, 0

[3] b' = 3b

 p2mm (6) <2; 3> a, 3b p2mm (6) <3; 2 + (0, 2)> a, 3b 0, 1 p2mm (6) <3; 2 + (0, 4)> a, 3b 0, 2
• Series of maximal isomorphic subgroups

[p] a' = pa

 p2mm (6) <(2; 3) + (2u, 0)> pa, b u, 0 prime p > 2; 0 ≤ u < p p conjugate subgroups

[p] b' = pb

 p2mm (6) <3; 2 + (0, 2u)> a, pb 0, u prime p > 2; 0 ≤ u < p p conjugate subgroups

I Minimal translationengleiche supergroups

 [2] p4mm (11)

II Minimal non-isomorphic klassengleiche supergroups

• Additional centring translations

 [2] c2mm (9)
• Decreased unit cell

 none