P1 No. 1 P1 C11

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1)

General position

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates

 
1 a 1
(1) xyz  

I Maximal translationengleiche subgroups

none

II Maximal klassengleiche subgroups

[2] a' = 2a

P1 (1)<1>2abc

[2] b' = 2b

P1 (1)<1>a, 2bc

[2] c' = 2c

P1 (1)<1>ab, 2c

[2] b' = 2b, c' = 2c

A1 (1, P1)<1>a, 2bb + c

[2] a' = 2a, c' = 2c

B1 (1, P1)<1>2aba + c

[2] a' = 2a, b' = 2b

C1 (1, P1)<1>2aa + bc

[2] a' = 2a, b' = 2b, c' = 2c

F1 (1, P1)<1>2aa + ba + c

[3] a' = 3a

P1 (1)<1>3abc

[3] a' = 3a, b' = a + b

P1 (1)<1>3aa + bc

[3] a' = 3a, b' = 2a + b

P1 (1)<1>3a, 2a + bc

[3] a' = 3a, c' = a + c

P1 (1)<1>3aba + c

[3] a' = 3a, c' = 2a + c

P1 (1)<1>3ab, 2a + c

[3] a' = 3a, b' = a + b, c' = a + c

P1 (1)<1>3aa + ba + c

[3] a' = 3a, b' = 2a + b, c' = a + c

P1 (1)<1>3a, 2a + ba + c

[3] a' = 3a, b' = a + b, c' = 2a + c

P1 (1)<1>3aa + b, 2a + c

[3] a' = 3a, b' = 2a + b, c' = 2a + c

P1 (1)<1>3a, 2a + b, 2a + c

[3] b' = 3b

P1 (1)<1>a, 3bc

[3] b' = 3b, c' = b + c

P1 (1)<1>a, 3bb + c

[3] b' = 3b, c' = 2b + c

P1 (1)<1>a, 3b, 2b + c

[3] c' = 3c

P1 (1)<1>ab, 3c

[p] a' = pa, b' = qa + b, c' = ra + c


P1 (1)<1>paqa + bra + c
 p prime; 0 ≤ q < p; 0 ≤ r < p
no conjugate subgroups

[p] b' = pb, c' = qb + c


P1 (1)<1>apbqb + c
 p prime; 0 ≤ q < p
no conjugate subgroups

[p] c' = pc


P1 (1)<1>abpc
 p prime
no conjugate subgroups

I Minimal translationengleiche supergroups

[2] P-1 (2); [2] P121 (3); [2] P112 (3); [2] P1211 (4); [2] P1121 (4); [2] C121 (5); [2] A112 (5); [2] P1m1 (6); [2] P11m (6); [2] P1c1 (7); [2] P11a (7); [2] C1m1 (8); [2] A11m (8); [2] C1c1 (9); [2] A11a (9); [3] P3 (143); [3] P31 (144); [3] P32 (145); [3] R3 (146)

II Minimal non-isomorphic klassengleiche supergroups

none
none








































to end of page
to top of page