Ccc2 No. 37 Ccc2 C2v13

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/21/2, 0); (2); (3)

General position

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates

 (0, 0, 0)+  (1/21/2, 0)+  
8 d 1
(1) xyz(2) -x-yz(3) x-yz + 1/2(4) -xyz + 1/2

I Maximal translationengleiche subgroups

[2] C1c1 (9)(1; 3)+
[2] Cc11 (9C1c1)(1; 4)+-bac
[2] C112 (3P112)(1; 2)+1/2(a - b), 1/2(a + b), c

II Maximal klassengleiche subgroups

[2] Pnn2 (34)1; 2; (3; 4) + (1/21/2, 0)
[2] Pnc2 (30)1; 3; (2; 4) + (1/21/2, 0)1/41/4, 0
[2] Pcn2 (30Pnc2)1; 4; (2; 3) + (1/21/2, 0)-bac1/41/4, 0
[2] Pcc2 (27)1; 2; 3; 4

[3] a' = 3a

braceCcc2 (37)<2; 3>3abc
Ccc2 (37)<3; 2 + (2, 0, 0)>3abc1, 0, 0
Ccc2 (37)<3; 2 + (4, 0, 0)>3abc2, 0, 0

[3] b' = 3b

braceCcc2 (37)<2; 3>a, 3bc
Ccc2 (37)<(2; 3) + (0, 2, 0)>a, 3bc0, 1, 0
Ccc2 (37)<(2; 3) + (0, 4, 0)>a, 3bc0, 2, 0

[3] c' = 3c

Ccc2 (37)<2; 3 + (0, 0, 1)>ab, 3c

[p] a' = pa


Ccc2 (37)<3; 2 + (2u, 0, 0)>pabcu, 0, 0
 prime p > 2; 0 ≤ u < p
p conjugate subgroups

[p] b' = pb


Ccc2 (37)<(2; 3) + (0, 2u, 0)>apbc0, u, 0
 prime p > 2; 0 ≤ u < p
p conjugate subgroups

[p] c' = pc


Ccc2 (37)<2; 3 + (0, 0, p/2 - 1/2)>abpc
 prime p > 2
no conjugate subgroups

I Minimal translationengleiche supergroups

[2] Cccm (66); [2] Ccce (68); [2] P4cc (103); [2] P4nc (104); [2] P42mc (105); [2] P42bc (106); [2] P-42c (112); [2] P-421c (114); [3] P6cc (184)

II Minimal non-isomorphic klassengleiche supergroups

[2] Fmm2 (42)
[2] a' = 1/2a, b' = 1/2b  Pcc2 (27); [2] c' = 1/2c  Cmm2 (35)








































to end of page
to top of page