Amm2 No. 38 Amm2 C2v14

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/21/2); (2); (3)

General position

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates

 (0, 0, 0)+  (0, 1/21/2)+  
8 f 1
(1) xyz(2) -x-yz(3) x-yz(4) -xyz

I Maximal translationengleiche subgroups

[2] A1m1 (8C1m1)(1; 3)+cb, -a - c
[2] Am11 (6P1m1)(1; 4)+1/2(b + c), a1/2(b - c)
[2] A112 (5)(1; 2)+

II Maximal klassengleiche subgroups

[2] Pnm21 (31Pmn21)1; 3; (2; 4) + (0, 1/21/2)-bac
[2] Pnc2 (30)1; 2; (3; 4) + (0, 1/21/2)
[2] Pmc21 (26)1; 4; (2; 3) + (0, 1/21/2)0, 1/4, 0
[2] Pmm2 (25)1; 2; 3; 4

[2] a' = 2a

Ima2 (46)<2; 3 + (1, 0, 0)>2abc
Ima2 (46)<(2; 3) + (1, 0, 0)>2abc1/2, 0, 0
Imm2 (44)<2; 3>2abc
Imm2 (44)<3; 2 + (1, 0, 0)>2abc1/2, 0, 0
Ama2 (40)<2; 3 + (1, 0, 0)>2abc
Ama2 (40)<(2; 3) + (1, 0, 0)>2abc1/2, 0, 0
Amm2 (38)<2; 3>2abc
Amm2 (38)<3; 2 + (1, 0, 0)>2abc1/2, 0, 0

[3] a' = 3a

braceAmm2 (38)<2; 3>3abc
Amm2 (38)<3; 2 + (2, 0, 0)>3abc1, 0, 0
Amm2 (38)<3; 2 + (4, 0, 0)>3abc2, 0, 0

[3] b' = 3b

braceAmm2 (38)<2; 3>a, 3bc
Amm2 (38)<(2; 3) + (0, 2, 0)>a, 3bc0, 1, 0
Amm2 (38)<(2; 3) + (0, 4, 0)>a, 3bc0, 2, 0

[3] c' = 3c

Amm2 (38)<2; 3>ab, 3c

[p] a' = pa


Amm2 (38)<3; 2 + (2u, 0, 0)>pabcu, 0, 0
 prime p > 2; 0 ≤ u < p
p conjugate subgroups

[p] b' = pb


Amm2 (38)<(2; 3) + (0, 2u, 0)>apbc0, u, 0
 prime p > 2; 0 ≤ u < p
p conjugate subgroups

[p] c' = pc


Amm2 (38)<2; 3>abpc
 prime p > 2
no conjugate subgroups

I Minimal translationengleiche supergroups

[2] Cmcm (63); [2] Cmmm (65); [3] P-6m2 (187); [3] P-62m (189)

II Minimal non-isomorphic klassengleiche supergroups

[2] Fmm2 (42)
[2] b' = 1/2b, c' = 1/2c  Pmm2 (25)








































to end of page
to top of page