I-4m2 No. 119 I-4m2 D2d9

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/21/21/2); (2); (3); (5)

General position

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates

 (0, 0, 0)+  (1/21/21/2)+  
16 j 1
(1) xyz(2) -x-yz(3) y-x-z(4) -yx-z
(5) x-yz(6) -xyz(7) yx-z(8) -y-x-z

I Maximal translationengleiche subgroups

[2] I-411 (82I-4)(1; 2; 3; 4)+
[2] I2m1 (44Imm2)(1; 2; 5; 6)+
[2] I212 (22F222)(1; 2; 7; 8)+a - ba + bc

II Maximal klassengleiche subgroups

[2] P-4n2 (118)1; 2; 3; 4; (5; 6; 7; 8) + (1/21/21/2)
[2] P-4n2 (118)1; 2; 7; 8; (3; 4; 5; 6) + (1/21/21/2)0, 1/21/4
[2] P-4m2 (115)1; 2; 3; 4; 5; 6; 7; 8
[2] P-4m2 (115)1; 2; 5; 6; (3; 4; 7; 8) + (1/21/21/2)0, 1/21/4

[3] c' = 3c

braceI-4m2 (119)<2; 3; 5>ab, 3c
I-4m2 (119)<2; 5; 3 + (0, 0, 2)>ab, 3c0, 0, 1
I-4m2 (119)<2; 5; 3 + (0, 0, 4)>ab, 3c0, 0, 2

[p] c' = pc


I-4m2 (119)<2; 5; 3 + (0, 0, 2u)>abpc0, 0, u
 prime p > 2; 0 ≤ u < p
p conjugate subgroups

[p2] a' = pa, b' = pb


I-4m2 (119)<2 + (2u, 2v, 0); 3 + (u - vu + v, 0); 5 + (0, 2v, 0)>papbcuv, 0
 prime p > 2; 0 ≤ u < p; 0 ≤ v < p
p2 conjugate subgroups

I Minimal translationengleiche supergroups

[2] I4/mmm (139); [2] I41/amd (141); [3] F-43m (216)

II Minimal non-isomorphic klassengleiche supergroups

none
[2] c' = 1/2c  C-4m2 (111, P-42m)








































to end of page
to top of page