P4/mnc No. 128 P4/m21/n2/c D4h6

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5); (9)

General position

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates

 
16 i 1
(1) xyz(2) -x-yz(3) -yxz(4) y-xz
(5) -x + 1/2y + 1/2-z + 1/2(6) x + 1/2-y + 1/2-z + 1/2(7) y + 1/2x + 1/2-z + 1/2(8) -y + 1/2-x + 1/2-z + 1/2
(9) -x-y-z(10) xy-z(11) y-x-z(12) -yx-z
(13) x + 1/2-y + 1/2z + 1/2(14) -x + 1/2y + 1/2z + 1/2(15) -y + 1/2-x + 1/2z + 1/2(16) y + 1/2x + 1/2z + 1/2

I Maximal translationengleiche subgroups

[2] P-4n2 (118)1; 2; 7; 8; 11; 12; 13; 14
[2] P-421c (114)1; 2; 5; 6; 11; 12; 15; 16
[2] P4nc (104)1; 2; 3; 4; 13; 14; 15; 16
[2] P4212 (90)1; 2; 3; 4; 5; 6; 7; 8 0, 1/21/4
[2] P4/m11 (83P4/m)1; 2; 3; 4; 9; 10; 11; 12
[2] P2/m12/c (66Cccm)1; 2; 7; 8; 9; 10; 15; 16a - ba + bc 0, 1/2, 0
[2] P2/m21/n1 (58Pnnm)1; 2; 5; 6; 9; 10; 13; 14

II Maximal klassengleiche subgroups

[3] c' = 3c

braceP4/mnc (128)<2; 3; 9; 5 + (0, 0, 1)>ab, 3c
P4/mnc (128)<2; 3; 5 + (0, 0, 3); 9 + (0, 0, 2)>ab, 3c0, 0, 1
P4/mnc (128)<2; 3; 5 + (0, 0, 5); 9 + (0, 0, 4)>ab, 3c0, 0, 2

[p] c' = pc


P4/mnc (128)<2; 3; 5 + (0, 0, p/2 - 1/2 + 2u); 9 + (0, 0, 2u)>abpc0, 0, u
 prime p > 2; 0 ≤ u < p
p conjugate subgroups

[p2] a' = pa, b' = pb


P4/mnc (128)<(2; 9) + (2u, 2v, 0); 3 + (u + v, -u + v, 0); 5 + (p/2 - 1/2 + 2up/2 - 1/2, 0)>papbcuv, 0
 prime p > 2; 0 ≤ u < p; 0 ≤ v < p
p2 conjugate subgroups

I Minimal translationengleiche supergroups

none

II Minimal non-isomorphic klassengleiche supergroups

[2] C4/mcc (124, P4/mcc); [2] I4/mmm (139)
[2] c' = 1/2c  P4/mbm (127)








































to end of page
to top of page