International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by Th. Hahn

International Tables for Crystallography (2006). Vol. A, ch. 1.1, p. 2

Section 1.1.3. Reciprocal space

Th. Hahna*

aInstitut für Kristallographie, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
Correspondence e-mail: hahn@xtal.rwth-aachen.de

1.1.3. Reciprocal space

| top | pdf |

Printed symbolExplanation
[{\bf a}^{*}], [{\bf b}^{*}], [{\bf c}^{*}]; or [{\bf a}^{*}_{i}] Basis vectors of the reciprocal lattice
[a^{*}], [b^{*}], [c^{*}] Lengths of basis vectors of the reciprocal lattice
[\alpha^{*}], [\beta^{*}], [\gamma^{*}] Interaxial (lattice) angles of the reciprocal lattice [{\bf b}^{*} \wedge {\bf c}^{*}], [{\bf c}^{*} \wedge {\bf a}^{*}], [{\bf a}^{*} \wedge {\bf b}^{*}]
[{\bf r}^{*}]; or h Reciprocal-lattice vector
h, k, l; or [h_{i}] Coordinates of a reciprocal-lattice point, expressed in units of [a^{*}], [b^{*}], [c^{*}], coefficients of the reciprocal-lattice vector [{\bf r}^{*}]
[V^{*}] Cell volume of the reciprocal lattice
[{\bf G}^{*}] Matrix of the geometrical coefficients (metric tensor) of the reciprocal lattice








































to end of page
to top of page