5. TRANSFORMATIONS IN CRYSTALLOGRAPHY

Fig. 5.1.3.5. Tetragonal lattices, projected along [001]. (a) Primitive cell \(P \) with \(a, b, c \) and the \(C \)-centred cells \(C_1 \) with \(a_1, b_1, c_1 \) and \(C_2 \) with \(a_2, b_2, c_2 \). Origin for all three cells is the same. (b) Body-centred cell \(F \) with \(a, b, c \) and the \(F \)-centred cells \(F_1 \) with \(a_1, b_1, c_1 \) and \(F_2 \) with \(a_2, b_2, c_2 \). Origin for all three cells is the same.

Fig. 5.1.3.7. Hexagonal lattice projected along [001]. Primitive hexagonal cell \(P \) with \(a, b, c \) and the three \(C \)-centred (orthohexagonal) cells \(a_1, b_1, c_1; a_2, b_2, c_2; a_3, b_3, c_3 \). Origin for all cells is the same.

Fig. 5.1.3.6. Unit cells in the rhombohedral lattice: same origin for all cells. The basis of the rhombohedral cell is labelled \(a \) with \(F \) and the \(a \)-centred cells \(F \). All three cells is the same. (a) Primitive rhombohedral cell (- - - lower edges), \(a \). Projection along \(\gamma \). (b) Reverse setting of triple hexagonal cell \(b \). (c) Obverse setting of triple hexagonal cell \(c \). (d) Body-centred cell \(d \). (e) And the three \(C \)-centred (orthohexagonal) cells \(e \).

The advantage of the use of \((4 \times 4)\) matrices is that a sequence of affine transformations corresponds to the product of the correspond-