5. TRANSFORMATIONS IN CRYSTALLOGRAPHY

Fig. 5.1.3.5. Tetragonal lattices, projected along [001]. (a) Primitive cell P with a, b, c and the C-centred cells C_1 with a_1, b_1, c and C_2 with a_2, b_2, c. Origin for all three cells is the same. (b) Body-centred cell F with a, b, c and the F-centred cells F_1 with a_1, b_1, c and F_2 with a_2, b_2, c. Origin for all three cells is the same.

Fig. 5.1.3.6. Unit cells in the rhombohedral lattice: same origin for all cells. The basis of the rhombohedral cell is labelled a, b, c. Two settings of the triple hexagonal cell are possible with respect to a primitive rhombohedral cell: the so-called reverse setting of triple hexagonal cell a_1, b_1, c; a_2, b_2, c; a_3, b_3, c. Projection along c. (c) Primitive rhombohedral cell (- - - lower edges), a, b, c in relation to the primitive hexagonal cell a_1, b_1, c; a_2, b_2, c; a_3, b_3, c. Projection along c'. (d) Primitive rhombohedral cell (- - - lower edges), a, b, c in relation to the three triple hexagonal cells in reverse setting a_1, b_1, c'; a_2, b_2, c'; a_3, b_3, c'. Projection along c'.

\[
\begin{pmatrix}
 x' \\
 y' \\
 z'
\end{pmatrix} = \begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix}
\begin{pmatrix}
 Q_{11} & Q_{12} & Q_{13} & q_1 \\
 Q_{21} & Q_{22} & Q_{23} & q_2 \\
 Q_{31} & Q_{32} & Q_{33} & q_3 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\]

The inverse of the augmented matrix P is the augmented matrix P^\dagger which contains the matrices P and p, specifically,

\[
P = P^\dagger = \begin{pmatrix}
P & p \\
p & 1
\end{pmatrix} = \begin{pmatrix}
Q^{-1} & -Q^{-1}q \\
0 & 1
\end{pmatrix}.
\]

The advantage of the use of (4×4) matrices is that a sequence of affine transformations corresponds to the product of the correspond-