5.1. TRANSFORMATIONS OF THE COORDINATE SYSTEM

Fig. 5.1.3.8. Hexagonal lattice projected along [001]. Primitive hexagonal cell \(P \) with \(a, b, c \) and the three triple hexagonal cells \(H \) with \(a_1, b_1, c_1; a_2, b_2, c_2; a_3, b_3, c_3 \). Origin for all cells is the same.

Fig. 5.1.3.9. Rhombohedral lattice with a triple hexagonal unit cell \(a, b, c \) in obverse setting (i.e. unit cell \(a_1, b_1, c_1 \) in Fig. 5.1.3.6d) and the three centred monoclinic cells. (a) C-centred cells \(C_1 \) with \(a_1, b_1, c_1; C_2 \) with \(a_2, b_2, c_2; \) and \(C_3 \) with \(a_3, b_3, c_3 \). The unique monoclinic axes are \(b_1, b_2 \) and \(b_3 \), respectively. Origin for all four cells is the same. (b) A-centred cells \(A_1 \) with \(a', b_1, c_1; A_2 \) with \(a', b_2, c_2; \) and \(A_3 \) with \(a', b_3, c_3 \). The unique monoclinic axes are \(c_1, c_2 \) and \(c_3 \), respectively. Origin for all four cells is the same.

The sequence of the corresponding inverse matrices \(P_i \) is reversed in the product

\[
P = P_n P_{n-1} \cdots P_1.
\]

The following items are also affected by a transformation:

(i) The metric matrix of direct lattice \(G \) [more exactly: the matrix of geometrical coefficients (metric tensor)] is transformed by the matrix \(P \) as follows:

\[
G' = P^t GP
\]

with \(P^t \) the transposed matrix of \(P \), i.e. rows and columns of \(P \) are interchanged. Specifically,

\[
G' = \begin{pmatrix}
 a' & a' & a' \\
 b' & b' & b' \\
 c' & c' & c'
\end{pmatrix}
= \begin{pmatrix}
 P_{11} & P_{21} & P_{31} \\
 P_{12} & P_{22} & P_{32} \\
 P_{13} & P_{23} & P_{33}
\end{pmatrix}
\begin{pmatrix}
 a & a & b & a & c \\
 b & a & b & b & c \\
 c & a & c & b & c
\end{pmatrix}
\times
\begin{pmatrix}
 P_{11} & P_{12} & P_{13} \\
 P_{21} & P_{22} & P_{23} \\
 P_{31} & P_{32} & P_{33}
\end{pmatrix}
\]

(ii) The metric matrix of reciprocal lattice \(G^* \) [more exactly: the matrix of geometrical coefficients (metric tensor)] is transformed by

\[
G'' = QG^*Q'.
\]

Here, the transposed matrix \(Q' \) is on the right-hand side of \(G^* \).

(iii) The volume of the unit cell \(V \) changes with the transformation. The volume of the new unit cell \(V' \) is obtained by

\[
V' = \det(P)V = \begin{vmatrix}
 P_{11} & P_{12} & P_{13} \\
 P_{21} & P_{22} & P_{23} \\
 P_{31} & P_{32} & P_{33}
\end{vmatrix}
V
\]

with \(\det(P) \) the determinant of the matrix \(P \). The corresponding equation for the volume of the unit cell in reciprocal space \(V^* \) is

\[
V'' = \det(Q)V^*.
\]

Matrices \(P \) and \(Q \) that frequently occur in crystallography are listed in Table 5.1.3.1.