Pnn2 C2v10 mm2 Orthorhombic No. 34 Pnn2 Patterson symmetry Pmmm

Origin on 1 1 2

 Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry operations

 (1)  1 (2)  2   0, 0, z (3)  n(1/2, 0, 1/2)   x, 1/4, z (4)  n(0, 1/2, 1/2)   1/4, y, z

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
General:
 4 c 1
 (1) x, y, z (2) -x, -y, z (3) x + 1/2, -y + 1/2, z + 1/2 (4) -x + 1/2, y + 1/2, z + 1/2
0kl : k + l = 2n
h0l : h + l = 2n
h00 : h = 2n
0k0 : k = 2n
00l : l = 2n
Special: as above, plus
 2 b . . 2
 0, 1/2, z 1/2, 0, z + 1/2
hkl : h + k + l = 2n
 2 a . . 2
 0, 0, z 1/2, 1/2, z + 1/2
hkl : h + k + l = 2n

Symmetry of special projections

 Along [001]   p2gga' = a   b' = b   Origin at 0, 0, z Along [100]   c1m1a' = b   b' = c   Origin at x, 0, 0 Along [010]   c11ma' = c   b' = a   Origin at 0, y, 0

Maximal non-isomorphic subgroups

 I [2] P1n1 (Pc, 7) 1; 3 [2] Pn11 (Pc, 7) 1; 4 [2] P112 (P2, 3) 1; 2
 IIa none
 IIb [2] Fdd2 (a' = 2a, b' = 2b, c' = 2c) (43)

Maximal isomorphic subgroups of lowest index

 IIc [3] Pnn2 (a' = 3a or b' = 3b) (34); [3] Pnn2 (c' = 3c) (34)

Minimal non-isomorphic supergroups

 I [2] Pnnn (48); [2] Pnna (52); [2] Pnnm (58); [2] P42nm (102); [2] P4nc (104); [2] P-4n2 (118)
 II [2] Ccc2 (37); [2] Ama2 (40); [2] Bbm2 (Ama2, 40); [2] Imm2 (44); [2] Pnc2 (a' = 1/2a) (30); [2] Pcn2 (b' = 1/2b) (Pnc2, 30); [2] Pba2 (c' = 1/2c) (32)