
8.1. Basic concepts

BY H. WONDRATSCHEK

8.1.1. Introduction

The aim of this part is to define and explain some of the concepts
and terms frequently used in crystallography, and to present some
basic knowledge in order to enable the reader to make best use of
the space-group tables.

The reader will be assumed to have some familiarity with
analytical geometry and linear algebra, including vector and matrix
calculus. Even though one can solve a good number of practical
crystallographic problems without this knowledge, some mathema-
tical insight is necessary for a more thorough understanding of
crystallography. In particular, the application of symmetry theory to
problems in crystal chemistry and crystal physics requires a
background of group theory and, sometimes, also of representation
theory.

The symmetry of crystals is treated in textbooks by different
methods and at different levels of complexity. In this part, a mainly
algebraic approach is used, but the geometric viewpoint is presented
also. The algebraic approach has two advantages: it facilitates
computer applications and it permits statements to be formulated in
such a way that they are independent of the dimension of the space.
This is frequently done in this part.

A great selection of textbooks and monographs is available for
the study of crystallography. Only Giacovazzo (2002) and
Vainshtein (1994) will be mentioned here.

Surveys of the history of crystallographic symmetry can be found
in Burckhardt (1988) and Lima-de-Faria (1990).

In addition to books, many programs exist by which crystal-
lographic computations can be performed. For example, the
programs can be used to derive the classes of point groups, space
groups, lattices (Bravais lattices) and crystal families; to calculate
the subgroups of point groups and space groups, Wyckoff positions,
irreducible representations etc. The mathematical program
packages GAP (Groups, Algorithms and Programming), in
particular CrystGap, and Carat (Crystallographic Algorithms and
Tables) are examples of powerful tools for the solution of problems
of crystallographic symmetry. For GAP, see http://www.gap-
system.org/; for Carat, see http://wwwb.math.rwth-aachen.de/
carat/. Other programs are provided by the crystallographic server
in Bilbao: http://www.cryst.ehu.es/cryst/.

Essential for the determination of crystal structures are extremely
efficient program systems that implicitly make use of crystal-
lographic (and noncrystallographic) symmetries.

In this part, as well as in the space-group tables of this volume,
‘classical’ crystallographic groups in three, two and one dimensions
are described, i.e. space groups, plane groups, line groups and their
associated point groups. In addition to three-dimensional
crystallography, which is the basis for the treatment of
crystal structures, crystallography of two- and one-
dimensional space is of practical importance. It is
encountered in sections and projections of crystal
structures, in mosaics and in frieze ornaments.

There are several expansions of ‘classical’ crystal-
lographic groups (groups of motions) that are not treated
in this volume but will or may be included in future
volumes of the IT series.

(a) Generalization of crystallographic groups to spaces
of dimension n � 3 is the field of n-dimensional
crystallography. Some results are available. The crystal-
lographic symmetry operations for spaces of any
dimension n have already been derived by Hermann
(1949). The crystallographic groups of four-dimensional
space are also completely known and have been tabulated
by Brown et al. (1978) and Schwarzenberger (1980). The

present state of the art and results for higher dimensions are
described by Opgenorth et al. (1998), Plesken & Schulz (2000) and
Souvignier (2003). Some of their results are displayed in Table
8.1.1.1.

(b) One can deal with groups of motions whose lattices of
translations have lower dimension than the spaces on which the
groups act. This expansion yields the subperiodic groups. In
particular, there are frieze groups (groups in a plane with one-
dimensional translations), rod groups (groups in space with one-
dimensional translations) and layer groups (groups in space with
two-dimensional translations). These subperiodic groups are treated
in IT E (2002) in a similar way to that in which line groups, plane
groups and space groups are treated in this volume. Subperiodic
groups are strongly related to ‘groups of generalized symmetry’.

(c) Incommensurate phases, e.g. modulated structures or
inclusion compounds, as well as quasicrystals, have led to an
extension of crystallography beyond periodicity. Such structures are
not really periodic in three-dimensional space but their symmetry
may be described as that of an n-dimensional periodic structure, i.e.
by an n-dimensional space group. In practical cases, n � 4, 5 or 6
holds. The crystal structure is then an irrational three-dimensional
section through the n-dimensional periodic structure. The descrip-
tion by crystallographic groups of higher-dimensional spaces is thus
of practical interest, cf. Janssen et al. (2004), van Smaalen (1995) or
Yamamoto (1996).

(d) Generalized symmetry. Other generalizations of crystal-
lographic symmetry combine the geometric symmetry operations
with changes of properties: black–white groups, colour groups etc.
They are treated in the classical book by Shubnikov & Koptsik
(1974). Janner (2001) has given an overview of further general-
izations.

8.1.2. Spaces and motions

Crystals are objects in the physical three-dimensional space in
which we live. A model for the mathematical treatment of this space
is the so-called point space, which in crystallography is known as
direct or crystal space. In this space, the structures of finite real
crystals are idealized as infinite perfect three-dimensional crystal
structures (cf. Section 8.1.4). This implies that for crystal structures
and their symmetries the surfaces of crystals as well as their defects
and imperfections are neglected; for most applications, this is an
excellent approximation.

The description of crystal structures and their symmetries is not
as simple as it appears at first sight. It is useful to consider not only

Table 8.1.1.1. Number of crystallographic classes for
dimensions 1 to 6

The numbers are those of the affine equivalence classes. The numbers for the
enantiomorphic pairs are given in parentheses preceded by a + sign (Souvignier, 2003).

Dimension
of space

Crystal
families

Lattice
(Bravais)
types

(Geometric)
crystal
classes

Arithmetic
crystal classes Space-group types

1 1 1 2 2 2

2 4 5 10 13 17

3 6 14 32 73 (+11) 219

4 (+6) 23 (+10) 64 (+44) 227 (+70) 710 (+111) 4783

5 32 189 955 6079 222018

6 91 841 7104 (+30) 85311 (+7052) 28927922
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the above-mentioned point space but also to introduce simulta-
neously a vector space which is closely connected with the point
space. Crystallographers are used to working in both spaces: crystal
structures are described in point space, whereas face normals,
translation vectors, Patterson vectors and reciprocal-lattice vectors
are elements of vector spaces.

In order to carry out crystallographic calculations it is necessary
to have a metrics in point space. Metrical relations, however, are
most easily introduced in vector space by defining scalar products
between vectors from which the length of a vector and the angle
between two vectors are derived. The connection between the
vector space Vn and the point space En transfers both the metrics
and the dimension of Vn onto the point space En in such a way that
distances and angles in point space may be calculated.

The connection between the two spaces is achieved in the
following way:

(i) To any two points P and Q of the point space En a vector
PQ
�� � r of the vector space Vn is attached.

(ii) For each point P of En and each vector r of Vn there is exactly
one point Q of En for which PQ

�� � r holds.
(iii) PQ

��� QR
�� � PR

��
.

The distance between two points P and Q in point space is given

by the length �PQ
��� � �PQ

��
, PQ����1�2

of the attached vector PQ
��

in
vector space. In this expression, �PQ

��
, PQ
��� is the scalar product of

PQ
��

with itself.
The angle determined by P, Q and R with vertex Q is obtained

from

cos�P, Q, R� � cos�QP
��

, QR
��� � �QP

��
, QR
���

�QP
��� � �QR

���
�

Here, �QP
��

, QR
��� is the scalar product between QP

��
and QR

��
. Such a

point space is called an n-dimensional Euclidean space.
If we select in the point space En an arbitrary point O as the

origin, then to each point X of En a unique vector OX
��

of Vn is
assigned, and there is a one-to-one correspondence between the
points X of En and the vectors OX

��
of Vn � X � OX

�� � x.
Referred to a vector basis a1, � � � , an of Vn, each vector x is

uniquely expressed as x � x1a1 � � � �� xnan or, using matrix

multiplication,* x � �a1, � � � , an�
x1

��
�

xn

�

�

�

�

�

�

.

Referred to the coordinate system �O, a1, � � � , an� of En, Fig.
8.1.2.1, each point X is uniquely described by the column of
coordinates

x �
x1

��
�

xn

�

�

�

�

�

�

�

Thus, the real numbers xi are either the coefficients of the vector x of
Vn or the coordinates of the point X of En.

An instruction assigning uniquely to each point X of the point
space En an ‘image’ point �X , whereby all distances are left
invariant, is called an isometry, an isometric mapping or a motion �
of En. Motions are invertible, i.e., for a given motion � � X � �X ,
the inverse motion �	1 � �X � X exists and is unique.

Referred to a coordinate system �O, a1, � � � , an�, any motion
X � �X may be described in the form

�x1 � W11x1 � � � � � W1nxn � w1

��
� � ��

� ��
� ��

�

�xn � Wn1x1 � � � � � Wnnxn � wn�

In matrix formulation, this is expressed as

�x1

��
�

�xn

�

�

�

�

�

�

�
W11 � � � W1n

��
� ��

�

Wn1 � � � Wnn

�

�

�

�

�

�

x1

��
�

xn

�

�

�

�

�

�

�
w1

��
�

wn

�

�

�

�

�

�

or, in abbreviated form, as �x � Wx � w, where �x, x and w are all
�n 
 1� columns and W is an �n 
 n� square matrix. One often
writes this in even more condensed form as �x � �W , w�x, or
�x � �W �w�x; here, �W �w� is called the Seitz symbol.

A motion consists of a rotation part or linear part and a
translation part. If the motion is represented by (W, w), the matrix
W describes the rotation part of the motion and is called the matrix
part of (W, w). The column w describes the translation part of the
motion and is called the vector part or column part of (W, w). For a
given motion, the matrix W depends only on the choice of the basis
vectors, whereas the column w in general depends on the choice of
the basis vectors and of the origin O; cf. Section 8.3.1.

It is possible to combine the �n 
 1� column and the �n 
 n�
matrix representing a motion into an �n � 1� 
 �n � 1� square
matrix which is called the augmented matrix. The system of
equations �x � Wx � w may then be expressed in the following
form:

�x1

��
�

�xn

1

�

�

�

�

�

�

�

�

�

�

�
w1

W ��
�

wn

0 � � � 0 1

�

�

�

�

�

�

�

�

�

�

x1

��
�

xn

1

�

�

�

�

�

�

�

�

�

�

or, in abbreviated form, by �� � ��. The augmentation is done in
two steps. First, the �n 
 1� column w is attached to the �n 
 n�
matrix and then the matrix is made square by attaching the
�1 
 �n � 1�� row �0 � � � 0 1�. Similarly, the �n 
 1� columns x and �x

Fig. 8.1.2.1. Representation of the point X with respect to origin O by the
vector OX

�� � x. The vector x is described with respect to the vector
basis a1, a2� of V2 by the coefficients x1, x2. The coordinate system
�O, a1, a2� of the point space E2 consists of the point O of E2 and the
vector basis a1, a2� of V2.

� For this volume, the following conventions for the writing of vectors and matrices
have been adopted:

(i) point coordinates and vector coefficients are written as �n 
 1� column
matrices;

(ii) the vectors of the vector basis are written as a �1 
 n� row matrix;
(iii) all running indices are written as subscripts.
It should be mentioned that other conventions are also found in the literature, e.g.

interchange of row and column matrices and simultaneous use of subscripts and
superscripts for running indices.
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have to be augmented to ��n � 1� 
 1� columns � and ��. The motion
is now described by the one matrix � instead of the pair
(W, w).

If the motion � is described by �, the ‘inverse motion’ �	1 is
described by �	1, where �W , w�	1 � �W	1, 	 W	1w�. Succes-
sive application of two motions, �1 and �2, results in another
motion �3:

�X � �1X and ��X � �2 �X � �2�1X � �3X �

with �3 � �2�1.
This can be described in matrix notation as follows

�x � W 1x � w1

and

��x � W 2�x � w2 � W 2W 1x � W 2w1 � w2 � W 3x � w3,

with �W 3, w3� � �W 2W 1, W 2w1 � w2� or

�� � �1� and ��� � �2�� � �2�1� � �3�

with �3 � �2�1.
It is a special advantage of the augmented matrices that

successive application of motions is described by the product of
the corresponding augmented matrices.

A point X is called a fixed point of the mapping � if it is invariant
under the mapping, i.e. �X � X �

In an n-dimensional Euclidean space En, three types of motions
can be distinguished:

(1) Translation. In this case, W � I , where I is the unit matrix;
the vector w � w1a1 � � � �� wnan is called the translation vector.

(2) Motions with at least one fixed point. In E1, E2 and E3, such
motions are called proper motions or rotations if det �W� � �1 and
improper motions if det �W� � 	1. Improper motions are called
inversions if W � 	I; reflections if W 2 � I and W �� 	I; and
rotoinversions in all other cases. The inversion is a rotation for
spaces of even dimension, but an (improper) motion of its own kind
in spaces of odd dimension. The origin is among the fixed points if
w � o, where o is the �n 
 1� column consisting entirely of zeros.

(3) Fixed-point-free motions which are not translations. In E3,
they are called screw rotations if det �W� � �1 and glide
reflections if det �W� � 	1. In E2, only glide reflections occur.
No such motions occur in E1.

In Fig. 8.1.2.2, the relations between the different types of
motions in E3 are illustrated. The diagram contains all kinds of
motions except the identity mapping � which leaves the whole space
invariant and which is described by � � �. Thus, it is
simultaneously a special rotation (with rotation angle 0) and a
special translation (with translation vector o).

So far, motions � in point space En have been considered.
Motions give rise to mappings of the corresponding vector space Vn

onto itself. If � maps the points P1 and Q1 of En onto P2 and Q2, the
vector P1Q1

����
is mapped onto the vector P2Q2

����
. If the motion in En is

described by �x � Wx � w, the vectors v of Vn are mapped
according to �v � Wv. In other words, of the linear and translation
parts of the motion of En, only the linear part remains in the
corresponding mapping of Vn (linear mapping). This difference
between the mappings in the two spaces is particularly obvious for
translations. For a translation � with translation vector t �� o, no
fixed point exists in En, i.e. no point of En is mapped onto itself by �.
In Vn, however, any vector v is mapped onto itself since the
corresponding linear mapping is the identity mapping.

8.1.3. Symmetry operations and symmetry groups

Definition: A symmetry operation of a given object in point space
En is a motion of En which maps this object (point, set of points,
crystal pattern etc.) onto itself.

Remark: Any motion may be a symmetry operation, because for
any motion one can construct an object which is mapped onto itself
by this motion.

For the set of all symmetry operations of a given object, the
following relations hold:

(a) successive application of two symmetry operations of an
object results in a third symmetry operation of that object;

(b) the inverse of a symmetry operation is also a symmetry
operation;

(c) there exists an ‘identity operation’ � which leaves each point
of the space fixed: X � X . This operation � is described (in any
coordinate system) by �W , w� � �I , o� or by � � � and it is a
symmetry operation of any object.

(d) The ‘associative law’ ��3�2��1 � �3��2�1� is valid.
One can show, however, that in general the ‘commutative law’
�2�1 � �1�2 is not obeyed for symmetry operations.

The properties (a ) to (d) are the group axioms. Thus, the set of all
symmetry operations of an object forms a group, the symmetry
group of the object or its symmetry. The mathematical theorems of
group theory, therefore, may be applied to the symmetries of
objects.

So far, only rather general objects have been considered.
Crystallographers, however, are particularly interested in the
symmetries of crystals. In order to introduce the concept of
crystallographic symmetry operations, crystal structures, crystal
patterns and lattices have to be taken into consideration. This will be
done in the following section.

8.1.4. Crystal patterns, vector lattices and point lattices

Crystals are finite real objects in physical space which may be
idealized by infinite three-dimensional periodic ‘crystal structures’
in point space. Three-dimensional periodicity means that there are
translations among the symmetry operations of the object with the
translation vectors spanning a three-dimensional space. Extending
this concept of crystal structure to more general periodic objects and
to n-dimensional space, one obtains the following definition:

Definition: An object in n-dimensional point space En is called an
n-dimensional crystallographic pattern or, for short, crystal pattern
if among its symmetry operations

(i) there are n translations, the translation vectors t1, � � � , tn of
which are linearly independent,

Fig. 8.1.2.2. Relations between the different kinds of motions in E3;
det l.p. � determinant of the linear part. The identity mapping does not
fit into this scheme properly and hence has been omitted.
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