
have to be augmented to ��n � 1� � 1� columns � and ��. The motion
is now described by the one matrix � instead of the pair
(W, w).

If the motion � is described by �, the ‘inverse motion’ ��1 is
described by ��1, where �W , w��1 � �W�1, � W�1w�. Succes-
sive application of two motions, �1 and �2, results in another
motion �3:

�X � �1X and ��X � �2 �X � �2�1X � �3X �

with �3 � �2�1.
This can be described in matrix notation as follows

�x � W 1x � w1

and

��x � W 2�x � w2 � W 2W 1x � W 2w1 � w2 � W 3x � w3,

with �W 3, w3� � �W 2W 1, W 2w1 � w2� or

�� � �1� and ��� � �2�� � �2�1� � �3�

with �3 � �2�1.
It is a special advantage of the augmented matrices that

successive application of motions is described by the product of
the corresponding augmented matrices.

A point X is called a fixed point of the mapping � if it is invariant
under the mapping, i.e. �X � X �

In an n-dimensional Euclidean space En, three types of motions
can be distinguished:

(1) Translation. In this case, W � I , where I is the unit matrix;
the vector w � w1a1 � � � �� wnan is called the translation vector.

(2) Motions with at least one fixed point. In E1, E2 and E3, such
motions are called proper motions or rotations if det �W� � �1 and
improper motions if det �W� � �1. Improper motions are called
inversions if W � �I; reflections if W 2 � I and W 	� �I; and
rotoinversions in all other cases. The inversion is a rotation for
spaces of even dimension, but an (improper) motion of its own kind
in spaces of odd dimension. The origin is among the fixed points if
w � o, where o is the �n � 1� column consisting entirely of zeros.

(3) Fixed-point-free motions which are not translations. In E3,
they are called screw rotations if det �W� � �1 and glide
reflections if det �W� � �1. In E2, only glide reflections occur.
No such motions occur in E1.

In Fig. 8.1.2.2, the relations between the different types of
motions in E3 are illustrated. The diagram contains all kinds of
motions except the identity mapping � which leaves the whole space
invariant and which is described by � � �. Thus, it is
simultaneously a special rotation (with rotation angle 0) and a
special translation (with translation vector o).

So far, motions � in point space En have been considered.
Motions give rise to mappings of the corresponding vector space Vn

onto itself. If � maps the points P1 and Q1 of En onto P2 and Q2, the
vector P1Q1

���

is mapped onto the vector P2Q2

���

. If the motion in En is

described by �x � Wx � w, the vectors v of Vn are mapped
according to �v � Wv. In other words, of the linear and translation
parts of the motion of En, only the linear part remains in the
corresponding mapping of Vn (linear mapping). This difference
between the mappings in the two spaces is particularly obvious for
translations. For a translation � with translation vector t 	� o, no
fixed point exists in En, i.e. no point of En is mapped onto itself by �.
In Vn, however, any vector v is mapped onto itself since the
corresponding linear mapping is the identity mapping.

8.1.3. Symmetry operations and symmetry groups

Definition: A symmetry operation of a given object in point space
En is a motion of En which maps this object (point, set of points,
crystal pattern etc.) onto itself.

Remark: Any motion may be a symmetry operation, because for
any motion one can construct an object which is mapped onto itself
by this motion.

For the set of all symmetry operations of a given object, the
following relations hold:

(a) successive application of two symmetry operations of an
object results in a third symmetry operation of that object;

(b) the inverse of a symmetry operation is also a symmetry
operation;

(c) there exists an ‘identity operation’ � which leaves each point
of the space fixed: X 
 X . This operation � is described (in any
coordinate system) by �W , w� � �I , o� or by � � � and it is a
symmetry operation of any object.

(d) The ‘associative law’ ��3�2��1 � �3��2�1� is valid.
One can show, however, that in general the ‘commutative law’
�2�1 � �1�2 is not obeyed for symmetry operations.

The properties (a ) to (d) are the group axioms. Thus, the set of all
symmetry operations of an object forms a group, the symmetry
group of the object or its symmetry. The mathematical theorems of
group theory, therefore, may be applied to the symmetries of
objects.

So far, only rather general objects have been considered.
Crystallographers, however, are particularly interested in the
symmetries of crystals. In order to introduce the concept of
crystallographic symmetry operations, crystal structures, crystal
patterns and lattices have to be taken into consideration. This will be
done in the following section.

8.1.4. Crystal patterns, vector lattices and point lattices

Crystals are finite real objects in physical space which may be
idealized by infinite three-dimensional periodic ‘crystal structures’
in point space. Three-dimensional periodicity means that there are
translations among the symmetry operations of the object with the
translation vectors spanning a three-dimensional space. Extending
this concept of crystal structure to more general periodic objects and
to n-dimensional space, one obtains the following definition:

Definition: An object in n-dimensional point space En is called an
n-dimensional crystallographic pattern or, for short, crystal pattern
if among its symmetry operations

(i) there are n translations, the translation vectors t1, � � � , tn of
which are linearly independent,

Fig. 8.1.2.2. Relations between the different kinds of motions in E3;
det l.p. � determinant of the linear part. The identity mapping does not
fit into this scheme properly and hence has been omitted.
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(ii) all translation vectors, except the zero vector o, have a length
of at least d � 0.

Condition (i) guarantees the n-dimensional periodicity and thus
excludes subperiodic symmetries like layer groups, rod groups and
frieze groups. Condition (ii) takes into account the finite size of
atoms in actual crystals.

Successive application of two translations of a crystal pattern
results in another translation, the translation vector of which is the
(vector) sum of the original translation vectors. Consequently, in
addition to the n linearly independent translation vectors t1, � � � , tn,
all (infinitely many) vectors t � u1t1 � � � �� untn (u1, � � � , un
arbitrary integers) are translation vectors of the pattern. Thus,
infinitely many translations belong to each crystal pattern. The
periodicity of crystal patterns is represented by their lattices. It is
useful to distinguish two kinds of lattices: vector lattices and point
lattices. This distinction corresponds to that between vector space
and point space, discussed above. The vector lattice is treated first.

Definition: The (infinite) set of all translation vectors of a crystal
pattern is called the lattice of translation vectors or the vector lattice
L of this crystal pattern.

In principle, any set of n linearly independent vectors may be
used as a basis of the vector space Vn. Most of these sets, however,
result in a rather complicated description of a given vector lattice.
The following theorem shows that among the (infinitely many)
possible bases of the vector space Vn special bases always exist,
referred to which the survey of a given vector lattice becomes
particularly simple.

Definitions: (1) A basis of n vectors a1, � � � , an of Vn is called a
crystallographic basis of the n-dimensional vector lattice L if every
integral linear combination t � u1a1� � � �� unan is a lattice vector
of L. (2) A basis is called a primitive crystallographic basis of L or,
for short, a primitive basis if it is a crystallographic basis and if,
furthermore, every lattice vector t of L may be obtained as an
integral linear combination of the basis vectors.

The distinction between these two kinds of bases can be
expressed as follows. Referred to a crystallographic basis, the
coefficients of each lattice vector must be either integral or rational.
Referred to a primitive crystallographic basis, only integral
coefficients occur. It should be noted that nonprimitive crystal-
lographic bases are used conventionally for the description of
‘centred lattices’, whereas reduced bases are always primitive; see
Chapter 9.2.

Example
The basis used conventionally for the description of the ‘cubic
body-centred lattice’ is a crystallographic basis because the
basis vectors a, b, c are lattice vectors. It is not a primitive
basis because lattice vectors with non-integral but rational coef-
ficients exist, e.g. the vector 1

2 a � 1
2 b� 1

2 c. The bases
a� � 1

2 ��a � b� c�, b� � 1
2 �a � b � c�, c� � 1

2 �a � b � c� or
a�� � a, b�� � b, c�� � 1

2 �a � b � c� are primitive bases. In the
first of these bases, the vector 1

2 �a � b � c� is given by
a� � b� � c�, in the second basis by c��, both with integral
coefficients only.

Fundamental theorem on vector lattices: For every vector lattice
L primitive bases exist.

It can be shown that (in dimensions n � 1) the number of
primitive bases for each vector lattice is infinite. There exists,
however, a procedure called ‘basis reduction’ (cf. Chapter 9.2),
which uniquely selects one primitive basis from this infinite set,
thus permitting unambiguous description and comparison of vector
lattices. Although such a reduced primitive basis always can be

selected, in many cases conventional coordinate systems are chosen
with nonprimitive rather than primitive crystallographic bases. The
reasons are given in Section 8.3.1. The term ‘primitive’ is used not
only for bases of lattices but also with respect to the lattices
themselves, as in the crystallographic literature a vector lattice is
frequently called primitive if its conventional basis is primitive.

With the help of the vector lattices defined above, the concept of
point lattices will be introduced.

Definition: Given an arbitrary point X0 in point space and a
vector lattice L consisting of vectors tj, the set of all points Xj with
X0X
��


j � tj is called the point lattice belonging to X0 and L.

A point lattice can be visualized as the set of end-points of all
vectors of L, where L is attached to an arbitrary point X0 of point
space. Because each point X of point space could be chosen as the
point X0, an infinite set of point lattices belongs to each vector
lattice. Frequently, the point X0 is chosen as the origin of the
coordinate system of the point space.

An important aspect of a lattice is its unit cell.

Definition: If a1, � � � , an is a crystallographic basis of a vector
lattice L, the set of all vectors x1a1 � � � �� xnan with 0 � xi � 1 is
called a unit cell of the vector lattice.

The concept of a ‘unit cell’ is not only applied to vector lattices in
vector space but also more often to crystal structures or crystal
patterns in point space. Here the coordinate system �O, a1, � � � , an�
and the origin X0 of the unit cell have to be chosen. In most cases
X0 � O is taken, but in general we have the following definition:

Definition: Given a crystallographic coordinate system
�O, a1, � � � , an� of a crystal pattern and a point X0 with coordinates
x0i, a unit cell of the crystal pattern is the set of all points X with
coordinates xi such that the equation 0 � xi � x0i � 1 �i �
1, � � � , n� holds.

Obviously, the term ‘unit cell’ may be transferred to real crystals.
As the volume of the unit cell and the volumes of atoms are both
finite, only a finite number N of atoms can occur in a unit cell of a
crystal. A crystal structure, therefore, may be described in two
ways:

(a) One starts with an arbitrary unit cell and builds up the whole
crystal structure by infinite repetition of this unit cell. The crystal
structure thus consists of an infinite number of finite ‘building
blocks’, each building block being a unit cell.

(b) One starts with a point X1 representing the centre of an atom.
To this point belong an infinite number of translationally equivalent
points Xj, i.e. points for which the vectors X1Xj

��

are lattice vectors. In

this way, from each of the points Xi �i � 1, � � � , N� within the unit
cell a point lattice of translationally equivalent points is obtained.
The crystal structure is then described by a finite number of
interpenetrating infinite point lattices.

In most cases, one is not interested in the orientation of the vector
lattice or the point lattices of a crystal structure in space, but only in
the shape and size of a unit cell. From this point of view, a three-
dimensional lattice is fully described by the lengths a, b and c of the
basis vectors a, b and c and by the three interaxial angles �, � and �.
These data are called the lattice parameters, cell parameters or
lattice constants of both the vector lattice and the associated point
lattices of the crystal structure.

8.1.5. Crystallographic symmetry operations

Crystallographic symmetry operations are special motions.

Definition: A motion is called a crystallographic symmetry
operation if a crystal pattern exists for which it is a symmetry
operation.
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