International
Tables for Crystallography Volume A Spacegroup symmetry Edited by Th. Hahn © International Union of Crystallography 2006 
International Tables for Crystallography (2006). Vol. A, ch. 9.1, p. 745
Section 9.1.7. Description of Bravais lattices^{a}Universität Erlangen–Nürnberg, RobertKochStrasse 4a, D91080 Uttenreuth, Germany, and ^{b}Institut für Angewandte Physik, Lehrstuhl für Kristallographie und Strukturphysik, Universität Erlangen–Nürnberg, Bismarckstrasse 10, D91054 Erlangen, Germany 
In Fig. 9.1.7.1, conventional cells for the 14 threedimensional Bravais lattices are illustrated.
In Tables 9.1.7.1 and 9.1.7.2, the two and threedimensional Bravais lattices are described in detail. For each entry, the tables contain conditions that must be fulfilled by the lattice parameters and the metric tensor. These conditions are given with respect to two different basis systems, first the conventional basis related to symmetry, second a special primitive basis (see below). In columns 2 and 3, basis vectors not required by symmetry to be of the same length are designated by different letters. Columns 4 and 5 contain the metric tensors for the two related bases. Column 6 shows the relations between the components of the two tensors.


The last columns of Tables 9.1.7.1 and 9.1.7.2 show parallel projections of the appropriate conventional unit cells. Among the different possible choices of the primitive basis, as discussed in Sections 9.1.1–9.1.5, the special primitive basis mentioned above is obtained according to the following rules:
If a primitive basis is chosen according to these rules, basis vectors of the conventional cell have parallel facediagonal or bodydiagonal orientation with respect to the basis vectors of the primitive cell. For cubic and rhombohedral lattices, the primitive basis vectors are selected such that they are symmetrically equivalent with respect to a threefold axis. In all cases, a face of the `domain of influence' is perpendicular to each basis vector of these primitive cells.