International Tables for Crystallography (2006). Vol. A, ch. 9.1, pp. 742-749
https://doi.org/10.1107/97809553602060000517

Chapter 9.1. Bases, lattices, Bravais lattices and other classifications

Chapter index

Basis
crystallographic, conventional, primitive 9.1.1, 9.1.4, 9.1.4, 9.1.5, 9.1.5, 9.1.5, 9.1.5, 9.1.7
of a lattice 9.1.2, 9.1.5
reduced 9.1.4
Bravais
(type of) lattice 9.1.6, 9.1.6
Cell
centred and primitive 9.1.4
conventional 9.1.4
reduced 9.1.4
Centred cell and lattice 9.1.4
Conventional basis, cell, coordinate system and origin 9.1.4, 9.1.4, 9.1.4, 9.1.5
Crystal
family 9.1.6
Crystallographic
basis, coordinate system and origin 9.1.1, 9.1.4, 9.1.5
Delaunay reduction and sorts 9.1.8
Dirichlet domain 9.1.3
Domain of influence 9.1.3, 9.1.3, 9.1.7
Eisenstein–Niggli reduction 9.1.8
Holohedry and holohedral point group 9.1.4
Lattice
basis 9.1.2, 9.1.5
parameters 9.1.4
topological properties of 9.1.3
type (Bravais type) 9.1.6
Matrix
of metrical coefficients (metric tensor) 9.1.1, 9.1.7.1
Metrical conventions for labelling of axes 9.1.1
Metric tensor 9.1.1, 9.1.7
Primitive basis, cell and lattice 9.1.5, 9.1.5, 9.1.7
Reduced basis and cell 9.1.4, 9.1.4
S centring 9.1.4
Selling–Delaunay reduction 9.1.8
Symmetrische Sorten 9.1.6, 9.1.8, 9.1.8.1
Topological properties of lattices 9.1.3
Translation
subgroup of a space group 9.1.6
Type
of lattice (Bravais type) 9.1.6, 9.1.6
Unit cell 9.1.2
Voronoi domain and Voronoi type 9.1.3, 9.1.6, 9.1.8
Wigner–Seitz cell 9.1.3
Wirkungsbereich (domain of influence) 9.1.3