International Tables for Crystallography (2016). Vol. A, ch. 1.1, pp. 2-11
https://doi.org/10.1107/97809553602060000919

Chapter 1.1. A general introduction to groups

Chapter index

abelian groups 1.1.2
centralizers 1.1.8
commutative groups 1.1.2
composition of symmetry operations 1.1.1
conjugacy 1.1.5
conjugacy classes 1.1.8, 1.1.8
conjugate subgroups 1.1.5
conjugation 1.1.8
coset representatives 1.1.4
cosets 1.1.4
crystal pattern 1.1.1
cyclic groups 1.1.2
equivalence classes 1.1.7
factor groups 1.1.5, 1.1.5
general linear group 1.1.2
general position 1.1.7
generators 1.1.2
geometric element 1.1.2
group actions 1.1.7
groups 1.1, 1.1.2
homomorphism 1.1.6
image of 1.1.6
injective 1.1.6
kernel of 1.1.6
surjective 1.1.6
homomorphism theorem 1.1.6
image of a homomorphism 1.1.6
index of a subgroup 1.1.4
injective homomorphism 1.1.6
isomorphic groups 1.1.6
isomorphism 1.1.6, 1.1.6
kernel of a homomorphism 1.1.6
Lagrange's theorem 1.1.4
left coset 1.1.4
maximal subgroups 1.1.3
multiplication table 1.1.2
normalizers 1.1.8, 1.1.8
normal subgroups 1.1.5, 1.1.5
orbit 1.1.7
order of a group 1.1.2
position
special 1.1.7
proper subgroups 1.1.3
quotient groups 1.1.5
right coset 1.1.4
site-symmetry group 1.1.7
special position 1.1.7
stabilizers 1.1.7
subgroups 1.1.3
conjugate 1.1.5
diagrams of 1.1.3
index of 1.1.4
maximal 1.1.3
normal 1.1.5, 1.1.5
proper 1.1.3
trivial 1.1.3
supergroups 1.1.3
surjective homomorphism 1.1.6
symmetry element 1.1.2
symmetry operations 1.1.1
composition of 1.1.1
trivial subgroup 1.1.3
unit (or identity) element 1.1.2
Wyckoff positions 1.1.7