
22

1.3. A general introduction to space groups

B. Souvignier

1.3.1. Introduction

We recall from Chapter 1.2 that an isometry is a mapping of the

point space E
n which preserves distances and angles. From the

mathematical viewpoint, En is an affine space in which two points

differ by a unique vector in the underlying vector space V
n. The

crucial difference between these two types of spaces is that in an

affine space no point is distinguished, whereas in a vector space

the zero vector plays a special role, namely as the identity

element for the addition of vectors. After choosing an origin O,

the points of the affine space E
n are in one-to-one correspon-

dence with the vectors of Vn by identifying a point P with the

difference vector OP
�!

.

A crystallographic space-group operation is an isometry that

maps a crystal pattern onto itself. Since isometries are invertible

and the composition of two isometries leaves a crystal pattern

invariant as a whole if the two single isometries do so, the space-

group operations form a group G, called a crystallographic space

group.

As a mapping of points in an affine space, a space-group

operation is an affine mapping and is thus composed of a linear

mapping of the underlying vector space and a translation. Once a

coordinate system has been chosen, space-group operations are

conveniently represented as matrix–column pairs ðW ;wÞ, where
W is the linear part and w the translation part and a point with

coordinates x is mapped to Wx þ w (cf. Section 1.2.2).

A translation is a matrix–column pair of the form ðI;wÞ, where
I is the unit matrix and all translations taken together form the

translation subgroup T of G. The translation subgroup is an

infinite group that forms an abelian normal subgroup of G. The

factor group G=T is a finite group that can be identified with

the group of linear parts of G via the mapping ðW ;wÞ 7!W ,

which simply forgets about the translation part. The group

P ¼ fW j ðW ;wÞ 2 Gg of linear parts occurring in G is called the

point group P of G.

The representation of space-group operations as matrix–

column pairs is clearly adapted to the fact that space groups

can be built from these two parts, the translation subgroup

and the point group. This viewpoint will be discussed in

detail in Section 1.3.3. It allows one to treat space groups in

many aspects analogously to finite groups, although, due to

the infinite translation subgroup, they are of course infinite

groups.

1.3.2. Lattices

A crystal pattern is defined to be periodic in three linearly

independent directions, which means that it is invariant under

translations in three linearly independent directions. This peri-

odicity implies that the crystal pattern extends infinitely in all

directions. Since the atoms of a crystal form a discrete pattern in

which two different points have a certain minimal distance, the

translations that fix the crystal pattern as a whole cannot have

arbitrarily small lengths. If v is a vector such that the crystal

pattern is invariant under a translation by v, the periodicity

implies that the pattern is invariant under a translation by mv for

every integer m. Furthermore, if a crystal pattern is invariant

under translations by v and w, it is also invariant by the

composition of these two translations, which is the translation by

v þ w. This shows that the set of vectors by which the translations

in a space group move the crystal pattern is closed under taking

integral linear combinations. This property is formalized by the

mathematical concept of a lattice and the translation subgroups

of space groups are best understood by studying their

corresponding lattices. These lattices capture the periodic nature

of the underlying crystal patterns and reflect their geometric

properties.

1.3.2.1. Basic properties of lattices

The two-dimensional vector space V
2 is the space of columns

x

y

� �

with two real components x; y 2 R and the three-

dimensional vector space V
3 is the space of columns

x

y

z

0

@

1

A with

three real components x; y; z 2 R. Analogously, the n-dimen-

sional vector space Vn is the space of columns v ¼

v1

..

.

vn

0

B

@

1

C

A

with n

real components.

For the sake of clarity we will restrict our discussions to three-

dimensional (and occasionally two-dimensional) space. The

generalization to n-dimensional space is straightforward and only

requires dealing with columns of n instead of three components

and with bases consisting of n instead of three basis vectors.

Definition

For vectors a; b; c forming a basis of the three-dimensional

vector space V
3, the set

L :¼ fla þ mb þ nc j l;m; n 2 Zg

of all integral linear combinations of a; b; c is called a lattice in

V
3 and the vectors a; b; c are called a lattice basis of L.

It is inherent in the definition of a crystal pattern that the

translation vectors of the translations leaving the pattern

invariant are closed under taking integral linear combinations.

Since the crystal pattern is assumed to be discrete, it follows

that all translation vectors can be written as integral linear

combinations of a finite generating set. The fundamental theorem

on finitely generated abelian groups (see e.g. Chapter 21 in

Armstrong, 1997) asserts that in this situation a set of three

translation vectors a; b; c can be found such that all translation

vectors are integral linear combinations of these three vectors.

This shows that the translation vectors of a crystal pattern

form a lattice with lattice basis a; b; c in the sense of the definition

above.

By definition, a lattice is determined by a lattice basis. Note,

however, that every two- or three-dimensional lattice has infi-

nitely many bases.
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Example

The square lattice

L ¼ Z
2
¼

m

n

� �

j m; n 2 Z

� �

in V
2 has the vectors

a ¼
1

0

� �

; b ¼
0

1

� �

as its standard lattice basis. But

a0 ¼
1

�2

� �

; b0 ¼
�2

3

� �

is also a lattice basis of L: on the one hand a0 and b0 are integral

linear combinations of a; b and are thus contained in L. On the

other hand

�3a0 � 2b0 ¼
�3

6

� �

þ
4

�6

� �

¼
1

0

� �

¼ a

and

�2a0 � b0 ¼
�2

4

� �

þ
2

�3

� �

¼
0

1

� �

¼ b;

hence a and b are also integral linear combinations of a0; b0 and

thus the two bases a; b and a0; b0 both span the same lattice (see

Fig. 1.3.2.1).

The example indicates how the different lattice bases of a

lattice L can be described. Recall that for a vector v =

xa þ yb þ zc the coefficients x; y; z are called the coordinates and

the vector

x

y

z

0

@

1

A is called the coordinate column of v with respect

to the basis a; b; c. The coordinate columns of the vectors in L

with respect to a lattice basis are therefore simply columns with

three integral components. In particular, if we take a second

lattice basis a0; b0; c0 of L, then the coordinate columns of a0, b0,

c0with respect to the first basis are columns of integers and thus

the basis transformation P such that ða0; b0; c0Þ ¼ ða; b; cÞP is an

integral 3 � 3 matrix. But if we interchange the roles of the two

bases, they are related by the inverse transformation P�1, i.e.

ða; b; cÞ ¼ ða0; b0; c0ÞP�1, and the argument given above asserts

that P�1 is also an integral matrix. Now, on the one hand detP

and detP�1 are both integers (being determinants of integral

matrices), on the other hand detP�1 ¼ 1= detP. This is only

possible if detP ¼ �1.

Summarizing, the different lattice bases of a lattice L are

obtained by transforming a single lattice basis a; b; c with integral

transformation matrices P such that detP ¼ �1.

1.3.2.2. Metric properties

In the three-dimensional vector spaceV3, the norm or length of

a vector v ¼

vx

vy

vz

0

@

1

A is (due to Pythagoras’ theorem) given by

jvj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
x þ v2

y þ v2z

q

:

From this, the scalar product

v � w ¼ vxwx þ vywy þ vzwz for v ¼

vx

vy

vz

0

@

1

A;w ¼

wx

wy

wz

0

@

1

A

is derived, which allows one to express angles by

cos ffðv;wÞ ¼
v � w

jvj jwj
:

The definition of a norm function for the vectors turns V3 into

a Euclidean space. A lattice L that is contained in V
3 inherits the

metric properties of this space. But for the lattice, these proper-

ties are most conveniently expressed with respect to a lattice

basis. It is customary to choose basis vectors a, b, c which define a

right-handed coordinate system, i.e. such that the matrix with

columns a, b, c has a positive determinant.

Definition

For a lattice L � V
3 with lattice basis a; b; c the metric tensor of

L is the 3 � 3 matrix

G ¼

a � a a � b a � c

b � a b � b b � c

c � a c � b c � c

0

@

1

A:

If A is the 3 � 3 matrix with the vectors a; b; c as its columns,

then the metric tensor is obtained as the matrix product

G ¼ AT � A. It follows immediately that the metric tensor is a

symmetric matrix, i.e. GT ¼ G.

Example

Let

a ¼

1

1

1

0

@

1

A; b ¼

1

1

0

0

@

1

A; c ¼

1

�1

0

0

@

1

A

be the basis of a lattice L. Then the metric tensor of L (with

respect to the given basis) is

G ¼

3 2 0

2 2 0

0 0 2

0

@

1

A:

With the help of the metric tensor the scalar products of

arbitrary vectors, given as linear combinations of the lattice basis,

can be computed from their coordinate columns as follows: If

v ¼ x1a þ y1b þ z1c and w ¼ x2a þ y2b þ z2c, then

Figure 1.3.2.1
Conventional basis a; b and a non-conventional basis a0; b0 for the square
lattice.
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v � w ¼ ðx1 y1 z1Þ �G �

x2

y2

z2

0

@

1

A:

From this it follows how the metric tensor transforms under a

basis transformation P. If ða0; b0; c0Þ ¼ ða; b; cÞP, then the metric

tensor G0 of L with respect to the new basis a0; b0; c0 is given by

G0 ¼ PT �G � P:

An alternative way to specify the geometry of a lattice in V
3 is

using the cell parameters, which are the lengths of the lattice basis

vectors and the angles between them.

Definition

For a lattice L in V
3 with lattice basis a; b; c the cell parameters

(also called lattice parameters, lattice constants or metric para-

meters) are given by the lengths

a ¼ jaj ¼
ffiffiffiffiffiffiffiffi

a � a
p

; b ¼ jbj ¼
ffiffiffiffiffiffiffiffiffi

b � b
p

; c ¼ jcj ¼
ffiffiffiffiffiffiffiffi

c � c
p

of the basis vectors and by the interaxial angles

� ¼ ffðb; cÞ; � ¼ ffðc; aÞ; � ¼ ffða; bÞ:

Owing to the relation v � w ¼ jvj jwj cos ffðv;wÞ for the scalar

product of two vectors, one can immediately write down the

metric tensor in terms of the cell parameters:

G ¼

a2 ab cos � ac cos �
ab cos � b2 bc cos �
ac cos� bc cos� c2

0

@

1

A:

1.3.2.3. Unit cells

A lattice L can be used to subdivide V
3 into cells of finite

volume which all have the same shape. The idea is to define a

suitable subset C ofV3 such that the translates of C by the vectors

in L cover V3 without overlapping. Such a subset C is called a unit

cell of L, or, in the more mathematically inclined literature, a

fundamental domain of V
3 with respect to L. Two standard

constructions for such unit cells are the primitive unit cell and the

Voronoı̈ domain (which is also known by many other names).

Definition

Let L be a lattice in V
3 with lattice basis a; b; c.

(i) The set C :¼ fxa þ yb þ zc j 0 � x; y; z< 1g is called the

primitive unit cell of L with respect to the basis a; b; c. The

primitive unit cell is the parallelepiped spanned by the

vectors of the given basis.

(ii) The set C :¼ fw 2 V
3
j jwj � jw � vj for all v 2 Lg is

called the Voronoı̈ domain or Dirichlet domain or Wigner–

Seitz cell or Wirkungsbereich or first Brillouin zone (for the

case of reciprocal lattices in dual space, see Section 1.3.2.5)

of L (around the origin).

The Voronoı̈ domain consists of those points of V3 that are

closer to the origin than to any other lattice point of L.

See Fig. 1.3.2.2 for examples of these two types of unit cells in

two-dimensional space.

It should be noted that the attribute ‘primitive’ for a unit cell is

often omitted. The term ‘unit cell’ then either denotes a primitive

unit cell in the sense of the definition above or a slight general-

ization of this, namely a cell spanned by vectors a, b, c which are

not necessarily a lattice basis. This will be discussed in detail in

the next section. If a unit cell in the even more general sense of a

cell whose translates cover the whole space without overlap (thus

including e.g. Voronoı̈ domains) is meant, this should be indicated

by the context.

The construction of the Voronoı̈ domain is independent of the

basis of L, as the Voronoı̈ domain is bounded by planes bisecting

the line segment between the origin and a lattice point and

perpendicular to this segment. In two-dimensional space, the

Voronoı̈ domain is simply bounded by lines, in three-dimensional

space it is bounded by planes and more generally it is bounded by

(n � 1)-dimensional hyperplanes in n-dimensional space.

The boundaries of the Voronoı̈ domain and its translates

overlap, thus in order to get a proper fundamental domain, part

of the boundary has to be excluded from the Voronoı̈ domain.

The volume V of the unit cell can be expressed both via the

metric tensor and via the cell parameters. One has

V2 ¼ detG

¼ a2b2c2ð1� cos2 �� cos2 �� cos2 � þ 2 cos � cos � cos �Þ

and thus

V ¼ abc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos2 �� cos2 �� cos2 � þ 2 cos � cos � cos �
p

:

Although the cell parameters depend on the chosen lattice basis,

the volume of the unit cell is not affected by a transition to a

different lattice basis a0; b0; c0. As remarked in Section 1.3.2.1, two

lattice bases are related by an integral basis transformation P of

determinant �1 and therefore detG0 ¼ detðPT �G � PÞ ¼ detG,

i.e. the determinant of the metric tensor is the same for all lattice

bases.

Assuming that the vectors a; b; c form a right-handed system,

the volume can also be obtained via

V ¼ a � ðb � cÞ ¼ b � ðc � aÞ ¼ c � ða � bÞ:

1.3.2.4. Primitive and centred lattices

The definition of a lattice as given in Section 1.3.2.1 states that

a lattice consists precisely of the integral linear combinations

of the vectors in a lattice basis. However, in crystallographic

Figure 1.3.2.2
Voronoı̈ domains and primitive unit cells for a rectangular lattice (a) and
an oblique lattice (b).
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applications it has turned out to be convenient to work with bases

that have particularly nice metric properties. For example, many

calculations are simplified if the basis vectors are perpendicular

to each other, i.e. if the metric tensor has all non-diagonal entries

equal to zero. Moreover, it is preferable that the basis vectors

reflect the symmetry properties of the lattice. By a case-by-case

analysis of the different types of lattices a set of rules for

convenient bases has been identified and bases conforming with

these rules are called conventional bases. The conventional bases

are chosen such that in all cases the integral linear combinations

of the basis vectors are lattice vectors, but it is admitted that not

all lattice vectors are obtained as integral linear combinations.

To emphasize that a basis has the property that the vectors of a

lattice are precisely the integral linear combinations of the basis

vectors, such a basis is called a primitive basis for this lattice.

If the conventional basis of a lattice is not a primitive basis for

this lattice, the price to be paid for the transition to the

conventional basis is that in addition to the integral linear

combinations of the basis vectors one requires one or more

centring vectors in order to obtain all lattice vectors. These

centring vectors have non-integral (but rational) coordinates with

respect to the conventional basis. The name centring vectors

reflects the fact that the additional vectors are usually the centres

of the unit cell or of faces of the unit cell spanned by the

conventional basis.

Definition

Let a; b; c be linearly independent vectors in V
3.

(i) A lattice L is called a primitive lattice with respect to

a basis a; b; c if L consists precisely of all integral

linear combinations of a; b; c, i.e. if L = LP =

fla þ mb þ nc j l;m; n 2 Zg.

(ii) A lattice L is called a centred lattice with respect to a basis

a; b; c if the integral linear combinations LP =

fla þ mb þ nc j l;m; n 2 Zg form a proper sublattice of L

such that L is the union of LP with the translates of LP

by centring vectors v1; . . . ; vs, i.e. L ¼ LP [ ðv1 þ LPÞ [

. . . [ ðvs þ LPÞ.

Typically, the basis a; b; c is a conventional basis and in this case

one often briefly says that a lattice L is a primitive lattice or a

centred lattice without explicitly mentioning the conventional

basis.

Example

A rectangular lattice has as conventional basis a vector a of

minimal length and a vector b of minimal length amongst the

vectors perpendicular to a. The resulting primitive lattice LP is

indicated by the filled nodes in Fig. 1.3.2.3. Now consider the

lattice L having both the filled and the open nodes in Fig.

1.3.2.3 as its lattice nodes. One sees that a0 ¼ 1
2 a þ 1

2 b,

b0 ¼ � 1
2 a þ 1

2 b is a primitive basis for L, but it is more

convenient to regard L as a centred lattice with respect to the

basis a; b with centring vector v ¼ 1
2 a þ 1

2 b. The filled nodes

then show the sublattice LP of L, the open nodes are the

translate v þ LP and L is the union LP [ ðv þ LPÞ.

Recalling that a lattice is in particular a group (with addition of

vectors as operation), the sublattice LP spanned by the basis of a

centred lattice is a subgroup of the centred lattice L. Together

with the zero vector v0 ¼ 0, the centring vectors form a set

v0; v1; . . . ; vs of coset representatives of L relative to LP and the

index [i] of LP in L is s + 1. In particular, the sum of two centring

vectors is, up to a vector in LP, again a centring vector, i.e. for

centring vectors vi, vj there is a unique centring vector vk

(possibly 0) such that vi þ vj ¼ vk þ w for a vector w 2 LP.

The concepts of primitive and centred lattices suggest corre-

sponding notions of primitive and centred unit cells. If a; b; c is a

primitive basis for the lattice L, then the parallelepiped spanned

by a; b; c is called a primitive unit cell (or primitive cell); if a; b; c

spans a proper sublattice LP of index [i] in L, then the parallel-

epiped spanned by a; b; c is called a centred unit cell (or centred

cell). Since translating a centred cell by translations from the

sublattice LP covers the full space, the centred cell contains one

representative from each coset of the centred lattice L relative to

LP. This means that the centred cell contains [i] lattice vectors of

the centred lattice and due to this a centred cell is also called a

multiple cell. As a consequence, the volume of the centred cell is

[i] times as large as that of a primitive cell for L.

For a conventional basis a; b; c of the lattice L, the parallel-

epiped spanned by a; b; c is called a conventional unit cell (or

conventional cell) of L. Depending on whether the conventional

basis is a primitive basis or not, i.e. whether the lattice is primitive

or centred, the conventional cell is a primitive or a centred

cell.

Remark: It is important to note that the cell parameters given

in the description of a crystallographic structure almost always

refer to a conventional cell. When in the crystallographic litera-

ture the term ‘unit cell’ is used without further attributes, in most

cases a conventional unit cell (as specified by the cell parameters)

is meant, which is a primitive or centred (multiple) cell depending

on whether the lattice is primitive or centred.

Example (continued)

In the example of a centred rectangular lattice, the conven-

tional basis a; b spans the centred unit cell indicated by solid

lines in Fig. 1.3.2.4, whereas the primitive basis a0 ¼ 1
2 a þ 1

2 b,

b0 ¼ � 1
2 a þ 1

2 b spans the primitive unit cell indicated by

dashed lines. One observes that the centred cell contains two

lattice vectors, o and a0, whereas the primitive cell only

contains the zero vector o (note that due to the condition

0 � x; y< 1 for the points in the unit cell the other vertices

Figure 1.3.2.3
Primitive rectangular lattice (only the filled nodes) and centred
rectangular lattice (filled and open nodes).

Figure 1.3.2.4
Primitive cell (dashed line) and centred cell (solid lines) for the centred
rectangular lattice.
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a0; b0; b of the cell are excluded). The volume of the centred

cell is clearly twice as large as that of the primitive cell.

Figures displaying the different primitive and centred unit cells

as well as tables describing the metric properties of the different

primitive and centred lattices are given in Section 3.1.2.

Examples

(i) The conventional basis for a primitive cubic lattice (cP)

is a basis a; b; c of vectors of equal length which are

pairwise perpendicular, i.e. with jaj ¼ jbj ¼ jcj and

a � b ¼ b � c ¼ c � a ¼ 0. As the name indicates, this basis

is a primitive basis.

(ii) A body-centred cubic lattice (cI) has as its conventional

basis the conventional basis a; b; c of a primitive cubic

lattice, but the lattice also contains the centring vector

v ¼ 1
2 a þ 1

2 b þ 1
2 c which points to the centre of the

conventional cell. If we denote the primitive cubic lattice

by LP , then the body-centred cubic lattice LI is the union

of LP and the translate v þ LP ¼ fv þ w j w 2 LPg. Since

LP is a sublattice of index 2 in LI , the ratio of the volumes

of the centred and the primitive cell of the body-centred

cubic lattice is 2.

A possible primitive basis for LI is a0 ¼ a, b0 ¼ b,

c0 ¼ 1
2 ða þ b þ cÞ. With respect to this basis, the metric

tensor of LI is

a2 �

1 0 1
2

0 1 1
2

1
2

1
2

3
4

0

@

1

A

(where a ¼ a � a). However, it is more common to use a

primitive basis with vectors of the same length and equal

interaxial angles. Such a basis is a00 ¼ 1
2 ð�a þ b þ cÞ,

b00 ¼ 1
2 ða � b þ cÞ, c00 ¼ 1

2 ða þ b � cÞ (cf. Fig. 1.5.1.3), and

with respect to this basis the metric tensor of LI is

a2

4
�

3 �1 �1

�1 3 �1

�1 �1 3

0

@

1

A:

(iii) The conventional basis for a face-centred cubic lattice (cF)

is again the conventional basis a; b; c of a primitive cubic

lattice, but the lattice also contains the three centring

vectors v1 ¼
1
2 b þ 1

2 c, v2 ¼
1
2 a þ 1

2 c, v3 ¼
1
2 a þ 1

2 b which

point to the centres of faces of the conventional cell.

The face-centred cubic lattice LF is the union of the

primitive cubic lattice LP with its translates vi þ LP by the

three centring vectors. The ratio of the volumes of the

centred and the primitive cell of the face-centred cubic

lattice is 4. In this case, the centring vectors actually form

a primitive basis of LF. With respect to the basis

a0 ¼ 1
2 ðb þ cÞ, b0 ¼ 1

2 ða þ cÞ, c0 ¼ 1
2 ða þ bÞ (cf. Fig. 1.5.1.4)

the metric tensor of LF is

a2

4
�

2 1 1

1 2 1

1 1 2

0

@

1

A:

(iv) In the conventional basis of a primitive hexagonal lattice,

the basis vector c is chosen as a shortest vector along a

sixfold axis. The vectors a and b then are shortest vectors

along twofold axes in a plane perpendicular to c and such

that they enclose an angle of 120�. The corresponding

metric tensor has the form

a2 �
a2

2
0

�
a2

2
a2 0

0 0 c2

0

B

B

B

@

1

C

C

C

A

:

(v) In the unit cell of the primitive hexagonal lattice LP, a

point with coordinates 2
3 ;

1
3 ; z is mapped to the points

� 1
3 ;

1
3 ; z and � 1

3 ;�
2
3 ; z under the threefold rotation

around the c axis. Both of these points are translates of
2
3 ;

1
3 ; z by lattice vectors of LP. This means that a

centring vector of the form 2
3 a þ 1

3 b þ zc will result in a

lattice which is invariant under the threefold rotation.

Choosing v1 ¼
1
3 ð2a þ b þ cÞ as centring vector, the

lattice generated by LP and v1 contains LP as a sublattice

of index 3 with coset representatives 0, v1 and

2v1 ¼
1
3 ð4a þ 2b þ 2cÞ. The coset representative 2v1 is

commonly replaced by v2 ¼
1
3 ða þ 2b þ 2cÞ and the

centred lattice LR with centring vectors v1 and v2 so

obtained is called the rhombohedrally centred lattice (hR).

The ratio of the volumes of the centred and the primitive

cell of the rhombohedrally centred lattice is 3.

For this lattice, the primitive basis of LR consisting of

three shortest non-coplanar vectors which are permuted

by the threefold rotation is also regarded as a conven-

tional basis. With respect to the above lattice basis

of the primitive hexagonal lattice, this basis can

be chosen as a0 ¼ 1
3 ð2a þ b þ cÞ, b0 ¼ 1

3 ð�a þ b þ cÞ,

c0 ¼ 1
3 ð�a � 2b þ cÞ. The metric tensor with respect to

this basis is

1

9
�

3a2 þ c2 �
3

2
a2 þ c2 �

3

2
a2 þ c2

�
3

2
a2 þ c2 3a2 þ c2 �

3

2
a2 þ c2

�
3

2
a2 þ c2 �

3

2
a2 þ c2 3a2 þ c2

0

B

B

B

B

B

@

1

C

C

C

C

C

A

:

Details about the transformations between hexagonal and

rhombohedral lattices are given in Section 1.5.3.1 and

Table 1.5.1.1 (see also Fig. 1.5.1.6).

Remark: In three-dimensional space V
3, the conventional

bases have been chosen in such a way that any isometry of a

centred lattice maps the sublattice generated by the conventional

basis to itself. This means that the matrices of the isometries of

the lattice are not only integral with respect to a primitive basis,

but also when written with respect to the conventional basis. The

advantage of the conventional basis is that the matrices are much

simpler.

In dimensions n 	 4, such a choice of a conventional basis is in

general no longer possible. For example, one will certainly regard

the standard orthonormal basis

a ¼

1

0

0

0

0

B

B

@

1

C

C

A

b ¼

0

1

0

0

0

B

B

@

1

C

C

A

c ¼

0

0

1

0

0

B

B

@

1

C

C

A

d ¼

0

0

0

1

0

B

B

@

1

C

C

A

of the four-dimensional hypercubic lattice as a conventional basis.

The body-centred lattice with centring vector 1
2 ða þ b þ c þ dÞ is

invariant under all the isometries of the hypercubic lattice, but
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the body-centred lattice itself allows isometries that do not leave

the hypercubic lattice invariant. Thus, not all isometries of the

body-centred lattice are integral with respect to the conventional

basis of the hypercubic lattice.

1.3.2.5. Reciprocal lattice

For crystallographic applications, a lattice L
 related to L is of

utmost importance. If the atoms are placed at the nodes of a

lattice L, then the diffraction pattern will have sharp Bragg peaks

at the nodes of the reciprocal lattice L
. More generally, if the

crystal pattern is invariant under translations from L, then the

locations of the Bragg peaks in the diffraction pattern will be

invariant under translations from L
.

Definition

Let L � V
3 be a lattice with lattice basis a; b; c. Then the

reciprocal basis a
; b
; c
 is defined by the properties

a � a
 ¼ b � b
 ¼ c � c
 ¼ 1

and

b � a
 ¼ c � a
 ¼ c � b
 ¼ a � b
 ¼ a � c
 ¼ b � c
 ¼ 0;

which can conveniently be written as the matrix equation

a � a
 a � b
 a � c


b � a
 b � b
 b � c


c � a
 c � b
 c � c


0

@

1

A ¼

1 0 0

0 1 0

0 0 1

0

@

1

A ¼ I3:

This means that a
 is perpendicular to the plane spanned by b

and c and its projection to the line along a has length 1=jaj.
Analogous properties hold for b
 and c
.

The reciprocal lattice L
 of L is defined to be the lattice with

lattice basis a
; b
; c
.

In three-dimensional space V
3, the reciprocal basis can be

determined via the vector product. Assuming that a; b; c form a

right-handed system that spans a unit cell of volume V, the

relation a � ðb � cÞ ¼ V and the defining conditions a � a
 ¼ 1,

b � a
 ¼ c � a
 ¼ 0 imply that a
 ¼ 1
V ðb � cÞ. Analogously, one

has b
 ¼ 1
V ðc � aÞ and c
 ¼ 1

V ða � bÞ.

The reciprocal lattice can also be defined independently of a

lattice basis by stating that the vectors of the reciprocal lattice

have integral scalar products with all vectors of the lattice:

L
 ¼ fw
 2 V
3
j v � w
 2 Z for all v 2 Lg:

Owing to the symmetry v � w ¼ w � v of the scalar product, the

roles of the basis and its reciprocal basis can be interchanged.

This means that ðL
Þ


¼ L, i.e. taking the reciprocal lattice ðL
Þ




of the reciprocal lattice L
 results in the original lattice L again.

Remark: In parts of the literature, especially in physics, the

reciprocal lattice is defined slightly differently. The condition

there is that ai � a
j ¼ 2� if i ¼ j and 0 otherwise and thus the

reciprocal lattice is scaled by the factor 2� as compared to the

above definition. By this variation the exponential function

expð�2�i v � wÞ is changed to expð�i v � wÞ, which simplifies the

formulas for the Fourier transform.

Example

Let a; b; c be the lattice basis of a primitive cubic lattice. Then

the body-centred cubic lattice LI with centring vector
1
2 ða þ b þ cÞ is the reciprocal lattice of the rescaled face-

centred cubic lattice 2LF, i.e. the lattice spanned by 2a; 2b; 2c

and the centring vectors b þ c, a þ c, a þ b.

This example illustrates that a lattice and its reciprocal lattice

need not have the same type. The reciprocal lattice of a body-

centred cubic lattice is a face-centred cubic lattice and vice versa.

However, the conventional bases are chosen such that for a

primitive lattice with a conventional basis as lattice basis, the

reciprocal lattice is a primitive lattice of the same type. Therefore

the reciprocal lattice of a centred lattice is always a centred lattice

for the same type of primitive lattice.

The reciprocal basis can be read off the inverse matrix of the

metric tensor G: We denote by P
 the matrix containing the

coordinate columns of a
; b
; c
 with respect to the basis a; b; c,

so that a
 ¼ P

11a þ P


21b þ P

31c etc. Recalling that scalar

products can be computed by multiplying the metric tensor G

from the left and right with coordinate columns with respect to

the basis a; b; c, the conditions

a � a
 a � b
 a � c


b � a
 b � b
 b � c


c � a
 c � b
 c � c


0

@

1

A ¼ I3

defining the reciprocal basis result in the matrix equation

I3 �G � P
 ¼ I3, since the coordinate columns of the basis

a; b; c with respect to itself are the rows of the identity matrix I3,

and P
 was just defined to contain the coordinate columns of

a
; b
; c
. But G � P
 ¼ I3 means that P
 ¼ G�1 and thus the

coordinate columns of a
; b
; c
 with respect to the basis a; b; c

are precisely the columns of the inverse matrix G�1 of the metric

tensor G.

From P
 ¼ G�1 one also derives that the metric tensor G
 of

the reciprocal basis is

G
 ¼ P
T �G � P
 ¼ G�1 �G �G�1 ¼ G�1:

This means that the metric tensors of a basis and its reciprocal

basis are inverse matrices of each other. As a further conse-

quence, the volume V
 of the unit cell spanned by the reciprocal

basis is V
 ¼ V�1, i.e. the inverse of the volume of the unit cell

spanned by a; b; c.

Of course, the reciprocal basis can also be computed from

the vectors ai directly. If B and B
 are the matrices containing

as ith column the vectors ai and a
i , respectively, then the

relation defining the reciprocal basis reads as BT � B
 ¼ I3,

i.e. B
 ¼ ðB�1Þ
T. Thus, the reciprocal basis vector a
i is the ith

column of the transposed matrix of B�1 and thus the ith

row of the inverse of the matrix B containing the ai as

columns.

The relations between the parameters of the unit cell spanned

by the reciprocal basis vectors and those of the unit cell spanned

by the original basis can either be obtained from the vector

product expressions for a
, b
, c
 or by explicitly inverting the

metric tensor G (e.g. using Cramer’s rule). The latter approach

would also be applicable in n-dimensional space. Either way, one

finds

a
 ¼
bc sin �

V
; b
 ¼

ca sin �

V
; c
 ¼

ab sin �

V
;

sin �
 ¼
V

abc sin� sin �
; cos�
 ¼

cos � cos � � cos �

sin � sin �
;

sin �
 ¼
V

abc sin � sin �
; cos�
 ¼

cos � cos�� cos �

sin � sin �
;

sin �
 ¼
V

abc sin � sin �
; cos �
 ¼

cos� cos �� cos �

sin � sin �
:
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Examples

(i) The lattice L spanned by the vectors

a ¼

1

1

1

0

@

1

A; b ¼

1

1

0

0

@

1

A; c ¼

1

�1

0

0

@

1

A

has metric tensor

G ¼

3 2 0

2 2 0

0 0 2

0

@

1

A:

The inverse of the metric tensor is

G
 ¼ G�1 ¼
1

2

2 �2 0

�2 3 0

0 0 1

0

@

1

A:

Interpreting the columns ofG�1 as coordinate vectors with

respect to the original basis, one concludes that the reci-

procal basis is given by

a
 ¼ a � b; b
 ¼ 1
2 ð�2a þ 3bÞ; c
 ¼ 1

2 c:

Inserting the columns for a, b, c, one obtains

a
 ¼

0

0

1

0

@

1

A; b
 ¼
1

2

1

1

�2

0

@

1

A; c
 ¼
1

2

1

�1

0

0

@

1

A:

For the direct computation, the matrix B with the basis

vectors a; b; c as columns is

B ¼

1 1 1

1 1 �1

1 0 0

0

@

1

A

and has as its inverse the matrix

B�1 ¼
1

2

0 0 2

1 1 �2

1 �1 0

0

@

1

A:

The rows of this matrix are indeed the vectors a
, b
, c
 as

computed above.

(ii) The body-centred cubic lattice L has the vectors

a ¼
1

2

�1

1

1

0

@

1

A; b ¼
1

2

1

�1

1

0

@

1

A; c ¼
1

2

1

1

�1

0

@

1

A

as primitive basis.

The matrix

B ¼
1

2

�1 1 1

1 �1 1

1 1 �1

0

@

1

A

with the basis vectors a; b; c as columns has as its inverse

the matrix

B�1 ¼

0 1 1

1 0 1

1 1 0

0

@

1

A:

The rows of B�1 are the vectors

a
 ¼

0

1

1

0

@

1

A; b
 ¼

1

0

1

0

@

1

A; c
 ¼

1

1

0

0

@

1

A;

showing that the reciprocal lattice of a body-centred cubic

lattice is a face-centred cubic lattice.

1.3.3. The structure of space groups

1.3.3.1. Point groups of space groups

The multiplication rule for symmetry operations

ðW 2; w2ÞðW 1; w1Þ ¼ ðW 2W 1; W 2w1 þ w2Þ

shows that the mapping � : ðW ;wÞ 7!W which assigns a space-

group operation to its linear part is actually a group homo-

morphism, because the first component of the combined

operation is simply the product of the linear parts of the two

operations. As a consequence, the linear parts of a space group

form a group themselves, which is called the point group of G. The

kernel of the homomorphism � consists precisely of the trans-

lations ðI; tÞ 2 T , and since kernels of homomorphisms are

always normal subgroups (cf. Section 1.1.6), the translation

subgroup T forms a normal subgroup of G. According to the

homomorphism theorem (see Section 1.1.6), the point group is

isomorphic to the factor group G=T .

Definition

The point group P of a space group G is the group of linear

parts of operations occurring in G. It is isomorphic to the factor

group G=T of G by the translation subgroup T .

When G is considered with respect to a coordinate system, the

operations of P are simply 3 � 3 matrices.

The point group plays an important role in the analysis of the

macroscopic properties of crystals: it describes the symmetry of

the set of face normals and can thus be directly observed. It is

usually obtained from the diffraction record of the crystal, where

adding the information about the translation subgroup explains

the sharpness of the Bragg peaks in the diffraction pattern.

Although we have already deduced that the translation

subgroup T of a space group G forms a normal subgroup in G

because it is the kernel of the homomorphism mapping each

operation to its linear part, it is worth investigating this fact by an

explicit computation. Let t ¼ ðI; tÞ be a translation in T and

W ¼ ðW ; wÞ an arbitrary operation in G, then one has

WtW�1 ¼ ðW ; wÞðI; tÞðW�1; �W�1wÞ

¼ ðW ; Wt þ wÞðW�1; �W�1wÞ

¼ ðI; �wþWt þ wÞ ¼ ðI; WtÞ;

which is again a translation in G, namely by Wt. This little

computation shows an important property of the translation

subgroup with respect to the point group, namely that every

vector from the translation lattice is mapped again to a lattice

vector by each operation of the point group of G.

Proposition. Let G be a space group with point group P and

translation subgroup T and let L ¼ ft j ðI; tÞ 2 T g be the lattice

of translations in T . Then P acts on the lattice L, i.e. for every

W 2 P and t 2 L one has Wt 2 L.

A point group that acts on a lattice is a subgroup of the full

group of symmetries of the lattice, obtained as the group of

orthogonal mappings that map the lattice to itself. With respect to

a primitive basis, the group of symmetries of a lattice consists of

all integral basis transformations that fix the metric tensor of the

lattice.
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