1.3. GENERAL INTRODUCTION TO SPACE GROUPS

Figure 1.3.2.1
Conventional basis \mathbf{a}, \mathbf{b} and a non-conventional basis $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}$ for the square lattice.

Example

The square lattice

$$
\mathbf{L}=\mathbb{Z}^{2}=\left\{\left.\binom{m}{n} \right\rvert\, m, n \in \mathbb{Z}\right\}
$$

in \mathbb{V}^{2} has the vectors

$$
\mathbf{a}=\binom{1}{0}, \quad \mathbf{b}=\binom{0}{1}
$$

as its standard lattice basis. But

$$
\mathbf{a}^{\prime}=\binom{1}{-2}, \quad \mathbf{b}^{\prime}=\binom{-2}{3}
$$

is also a lattice basis of \mathbf{L} : on the one hand \mathbf{a}^{\prime} and \mathbf{b}^{\prime} are integral linear combinations of \mathbf{a}, \mathbf{b} and are thus contained in \mathbf{L}. On the other hand

$$
-3 \mathbf{a}^{\prime}-2 \mathbf{b}^{\prime}=\binom{-3}{6}+\binom{4}{-6}=\binom{1}{0}=\mathbf{a}
$$

and

$$
-2 \mathbf{a}^{\prime}-\mathbf{b}^{\prime}=\binom{-2}{4}+\binom{2}{-3}=\binom{0}{1}=\mathbf{b},
$$

hence \mathbf{a} and \mathbf{b} are also integral linear combinations of $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}$ and thus the two bases \mathbf{a}, \mathbf{b} and $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}$ both span the same lattice (see Fig. 1.3.2.1).

The example indicates how the different lattice bases of a lattice \mathbf{L} can be described. Recall that for a vector $\mathbf{v}=$ $x \mathbf{a}+y \mathbf{b}+z \mathbf{c}$ the coefficients x, y, z are called the coordinates and the vector $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ is called the coordinate column of \mathbf{v} with respect to the basis $\mathbf{a}, \mathbf{b}, \mathbf{c}$. The coordinate columns of the vectors in \mathbf{L} with respect to a lattice basis are therefore simply columns with three integral components. In particular, if we take a second lattice basis $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$ of \mathbf{L}, then the coordinate columns of $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}$, \mathbf{c}^{\prime} with respect to the first basis are columns of integers and thus the basis transformation \boldsymbol{P} such that $\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\right)=(\mathbf{a}, \mathbf{b}, \mathbf{c}) \boldsymbol{P}$ is an integral 3×3 matrix. But if we interchange the roles of the two bases, they are related by the inverse transformation \boldsymbol{P}^{-1}, i.e. $(\mathbf{a}, \mathbf{b}, \mathbf{c})=\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\right) \boldsymbol{P}^{-1}$, and the argument given above asserts that \boldsymbol{P}^{-1} is also an integral matrix. Now, on the one hand $\operatorname{det} \boldsymbol{P}$ and $\operatorname{det} \boldsymbol{P}^{-1}$ are both integers (being determinants of integral matrices), on the other hand $\operatorname{det} \boldsymbol{P}^{-1}=1 / \operatorname{det} \boldsymbol{P}$. This is only possible if $\operatorname{det} \boldsymbol{P}= \pm 1$.

Summarizing, the different lattice bases of a lattice \mathbf{L} are obtained by transforming a single lattice basis $\mathbf{a}, \mathbf{b}, \mathbf{c}$ with integral transformation matrices \boldsymbol{P} such that $\operatorname{det} \boldsymbol{P}= \pm 1$.

1.3.2.2. Metric properties

In the three-dimensional vector space \mathbb{V}^{3}, the norm or length of a vector $\mathbf{v}=\left(\begin{array}{l}v_{x} \\ v_{y} \\ v_{z}\end{array}\right)$ is (due to Pythagoras' theorem) given by

$$
|\mathbf{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}
$$

From this, the scalar product

$$
\mathbf{v} \cdot \mathbf{w}=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z} \text { for } \mathbf{v}=\left(\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right), \mathbf{w}=\left(\begin{array}{l}
w_{x} \\
w_{y} \\
w_{z}
\end{array}\right)
$$

is derived, which allows one to express angles by

$$
\cos \angle(\mathbf{v}, \mathbf{w})=\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|}
$$

The definition of a norm function for the vectors turns \mathbb{V}^{3} into a Euclidean space. A lattice \mathbf{L} that is contained in \mathbb{V}^{3} inherits the metric properties of this space. But for the lattice, these properties are most conveniently expressed with respect to a lattice basis. It is customary to choose basis vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ which define a right-handed coordinate system, i.e. such that the matrix with columns $\mathbf{a}, \mathbf{b}, \mathbf{c}$ has a positive determinant.

Definition

For a lattice $\mathbf{L} \subseteq \mathbb{V}^{3}$ with lattice basis $\mathbf{a}, \mathbf{b}, \mathbf{c}$ the metric tensor of \mathbf{L} is the 3×3 matrix

$$
\boldsymbol{G}=\left(\begin{array}{lll}
\mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\
\mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{c} \\
\mathbf{c} \cdot \mathbf{a} & \mathbf{c} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c}
\end{array}\right)
$$

If \boldsymbol{A} is the 3×3 matrix with the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ as its columns, then the metric tensor is obtained as the matrix product $\boldsymbol{G}=\boldsymbol{A}^{\mathrm{T}} \cdot \boldsymbol{A}$. It follows immediately that the metric tensor is a symmetric matrix, i.e. $\boldsymbol{G}^{\mathrm{T}}=\boldsymbol{G}$.

Example

Let

$$
\mathbf{a}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad \mathbf{c}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

be the basis of a lattice \mathbf{L}. Then the metric tensor of \mathbf{L} (with respect to the given basis) is

$$
\boldsymbol{G}=\left(\begin{array}{lll}
3 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

With the help of the metric tensor the scalar products of arbitrary vectors, given as linear combinations of the lattice basis, can be computed from their coordinate columns as follows: If $\mathbf{v}=x_{1} \mathbf{a}+y_{1} \mathbf{b}+z_{1} \mathbf{c}$ and $\mathbf{w}=x_{2} \mathbf{a}+y_{2} \mathbf{b}+z_{2} \mathbf{c}$, then

1. INTRODUCTION TO SPACE-GROUP SYMMETRY

$$
\mathbf{v} \cdot \mathbf{w}=\left(x_{1} y_{1} z_{1}\right) \cdot \boldsymbol{G} \cdot\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right) .
$$

From this it follows how the metric tensor transforms under a basis transformation \boldsymbol{P}. If $\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\right)=(\mathbf{a}, \mathbf{b}, \mathbf{c}) \boldsymbol{P}$, then the metric tensor \boldsymbol{G}^{\prime} of \mathbf{L} with respect to the new basis $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$ is given by

$$
\boldsymbol{G}^{\prime}=\boldsymbol{P}^{\mathrm{T}} \cdot \boldsymbol{G} \cdot \boldsymbol{P}
$$

An alternative way to specify the geometry of a lattice in \mathbb{V}^{3} is using the cell parameters, which are the lengths of the lattice basis vectors and the angles between them.

Definition

For a lattice \mathbf{L} in \mathbb{V}^{3} with lattice basis $\mathbf{a}, \mathbf{b}, \mathbf{c}$ the cell parameters (also called lattice parameters, lattice constants or metric parameters) are given by the lengths

$$
a=|\mathbf{a}|=\sqrt{\mathbf{a} \cdot \mathbf{a}}, \quad b=|\mathbf{b}|=\sqrt{\mathbf{b} \cdot \mathbf{b}}, \quad c=|\mathbf{c}|=\sqrt{\mathbf{c} \cdot \mathbf{c}}
$$

of the basis vectors and by the interaxial angles

$$
\alpha=\angle(\mathbf{b}, \mathbf{c}), \quad \beta=\angle(\mathbf{c}, \mathbf{a}), \quad \gamma=\angle(\mathbf{a}, \mathbf{b}) .
$$

Owing to the relation $\mathbf{v} \cdot \mathbf{w}=|\mathbf{v}||\mathbf{w}| \cos \angle(\mathbf{v}, \mathbf{w})$ for the scalar product of two vectors, one can immediately write down the metric tensor in terms of the cell parameters:

$$
\boldsymbol{G}=\left(\begin{array}{ccc}
a^{2} & a b \cos \gamma & a c \cos \beta \\
a b \cos \gamma & b^{2} & b c \cos \alpha \\
a c \cos \beta & b c \cos \alpha & c^{2}
\end{array}\right) .
$$

1.3.2.3. Unit cells

A lattice \mathbf{L} can be used to subdivide \mathbb{V}^{3} into cells of finite volume which all have the same shape. The idea is to define a suitable subset \mathbf{C} of \mathbb{V}^{3} such that the translates of \mathbf{C} by the vectors in \mathbf{L} cover \mathbb{V}^{3} without overlapping. Such a subset \mathbf{C} is called a unit cell of \mathbf{L}, or, in the more mathematically inclined literature, a fundamental domain of \mathbb{V}^{3} with respect to \mathbf{L}. Two standard constructions for such unit cells are the primitive unit cell and the Voronoï domain (which is also known by many other names).

Definition

Let \mathbf{L} be a lattice in \mathbb{V}^{3} with lattice basis $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
(i) The set $\mathbf{C}:=\{x \mathbf{a}+y \mathbf{b}+z \mathbf{c} \mid 0 \leq x, y, z<1\}$ is called the primitive unit cell of \mathbf{L} with respect to the basis $\mathbf{a}, \mathbf{b}, \mathbf{c}$. The primitive unit cell is the parallelepiped spanned by the vectors of the given basis.
(ii) The set $\mathbf{C}:=\left\{\mathbf{w} \in \mathbb{V}^{3}| | \mathbf{w}|\leq|\mathbf{w}-\mathbf{v}|\right.$ for all $\mathbf{v} \in \mathbf{L}\}$ is called the Voronoï domain or Dirichlet domain or WignerSeitz cell or Wirkungsbereich or first Brillouin zone (for the case of reciprocal lattices in dual space, see Section 1.3.2.5) of \mathbf{L} (around the origin).
The Voronoï domain consists of those points of \mathbb{V}^{3} that are closer to the origin than to any other lattice point of \mathbf{L}.
See Fig. 1.3.2.2 for examples of these two types of unit cells in two-dimensional space.
It should be noted that the attribute 'primitive' for a unit cell is often omitted. The term 'unit cell' then either denotes a primitive unit cell in the sense of the definition above or a slight generalization of this, namely a cell spanned by vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ which are not necessarily a lattice basis. This will be discussed in detail in

(a)

(b)

Figure 1.3.2.2
Voronoï domains and primitive unit cells for a rectangular lattice (a) and an oblique lattice (b).
the next section. If a unit cell in the even more general sense of a cell whose translates cover the whole space without overlap (thus including e.g. Voronoï domains) is meant, this should be indicated by the context.
The construction of the Voronoï domain is independent of the basis of \mathbf{L}, as the Voronoï domain is bounded by planes bisecting the line segment between the origin and a lattice point and perpendicular to this segment. In two-dimensional space, the Voronoï domain is simply bounded by lines, in three-dimensional space it is bounded by planes and more generally it is bounded by ($n-1$)-dimensional hyperplanes in n-dimensional space.

The boundaries of the Voronoï domain and its translates overlap, thus in order to get a proper fundamental domain, part of the boundary has to be excluded from the Voronoï domain.

The volume V of the unit cell can be expressed both via the metric tensor and via the cell parameters. One has

$$
\begin{aligned}
V^{2} & =\operatorname{det} \boldsymbol{G} \\
& =a^{2} b^{2} c^{2}\left(1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma\right)
\end{aligned}
$$

and thus

$$
V=a b c \sqrt{1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma}
$$

Although the cell parameters depend on the chosen lattice basis, the volume of the unit cell is not affected by a transition to a different lattice basis $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$. As remarked in Section 1.3.2.1, two lattice bases are related by an integral basis transformation \boldsymbol{P} of determinant ± 1 and therefore $\operatorname{det} \boldsymbol{G}^{\prime}=\operatorname{det}\left(\boldsymbol{P}^{\mathrm{T}} \cdot \boldsymbol{G} \cdot \boldsymbol{P}\right)=\operatorname{det} \boldsymbol{G}$, i.e. the determinant of the metric tensor is the same for all lattice bases.

Assuming that the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ form a right-handed system, the volume can also be obtained via

$$
V=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})=\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})
$$

1.3.2.4. Primitive and centred lattices

The definition of a lattice as given in Section 1.3.2.1 states that a lattice consists precisely of the integral linear combinations of the vectors in a lattice basis. However, in crystallographic

