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1.3. GENERAL INTRODUCTION TO SPACE GROUPS

the body-centred lattice itself allows isometries that do not leave

the hypercubic lattice invariant. Thus, not all isometries of the

body-centred lattice are integral with respect to the conventional

basis of the hypercubic lattice.

1.3.2.5. Reciprocal lattice

For crystallographic applications, a lattice L� related to L is of

utmost importance. If the atoms are placed at the nodes of a

lattice L, then the diffraction pattern will have sharp Bragg peaks

at the nodes of the reciprocal lattice L�. More generally, if the

crystal pattern is invariant under translations from L, then the

locations of the Bragg peaks in the diffraction pattern will be

invariant under translations from L�.

Definition

Let L � V
3 be a lattice with lattice basis a; b; c. Then the

reciprocal basis a�; b�; c� is defined by the properties

a � a� ¼ b � b� ¼ c � c� ¼ 1

and

b � a� ¼ c � a� ¼ c � b� ¼ a � b� ¼ a � c� ¼ b � c� ¼ 0;

which can conveniently be written as the matrix equation

a � a� a � b� a � c�

b � a� b � b� b � c�

c � a� c � b� c � c�

0
@

1
A ¼

1 0 0

0 1 0

0 0 1

0
@

1
A ¼ I3:

This means that a� is perpendicular to the plane spanned by b

and c and its projection to the line along a has length 1=jaj.
Analogous properties hold for b� and c�.

The reciprocal lattice L� of L is defined to be the lattice with

lattice basis a�; b�; c�.

In three-dimensional space V
3, the reciprocal basis can be

determined via the vector product. Assuming that a; b; c form a

right-handed system that spans a unit cell of volume V, the

relation a � ðb � cÞ ¼ V and the defining conditions a � a� ¼ 1,

b � a� ¼ c � a� ¼ 0 imply that a� ¼ 1
V ðb � cÞ. Analogously, one

has b� ¼ 1
V ðc � aÞ and c� ¼ 1

V ða � bÞ.

The reciprocal lattice can also be defined independently of a

lattice basis by stating that the vectors of the reciprocal lattice

have integral scalar products with all vectors of the lattice:

L� ¼ fw� 2 V
3
j v � w� 2 Z for all v 2 Lg:

Owing to the symmetry v � w ¼ w � v of the scalar product, the

roles of the basis and its reciprocal basis can be interchanged.

This means that ðL�Þ
�
¼ L, i.e. taking the reciprocal lattice ðL�Þ

�

of the reciprocal lattice L� results in the original lattice L again.

Remark: In parts of the literature, especially in physics, the

reciprocal lattice is defined slightly differently. The condition

there is that ai � a�j ¼ 2� if i ¼ j and 0 otherwise and thus the

reciprocal lattice is scaled by the factor 2� as compared to the

above definition. By this variation the exponential function

expð�2�i v � wÞ is changed to expð�i v � wÞ, which simplifies the

formulas for the Fourier transform.

Example

Let a; b; c be the lattice basis of a primitive cubic lattice. Then

the body-centred cubic lattice LI with centring vector
1
2 ða þ b þ cÞ is the reciprocal lattice of the rescaled face-

centred cubic lattice 2LF, i.e. the lattice spanned by 2a; 2b; 2c

and the centring vectors b þ c, a þ c, a þ b.

This example illustrates that a lattice and its reciprocal lattice

need not have the same type. The reciprocal lattice of a body-

centred cubic lattice is a face-centred cubic lattice and vice versa.

However, the conventional bases are chosen such that for a

primitive lattice with a conventional basis as lattice basis, the

reciprocal lattice is a primitive lattice of the same type. Therefore

the reciprocal lattice of a centred lattice is always a centred lattice

for the same type of primitive lattice.

The reciprocal basis can be read off the inverse matrix of the

metric tensor G: We denote by P� the matrix containing the

coordinate columns of a�; b�; c� with respect to the basis a; b; c,

so that a� ¼ P�
11a þ P�

21b þ P�
31c etc. Recalling that scalar

products can be computed by multiplying the metric tensor G

from the left and right with coordinate columns with respect to

the basis a; b; c, the conditions

a � a� a � b� a � c�

b � a� b � b� b � c�

c � a� c � b� c � c�

0
@

1
A ¼ I3

defining the reciprocal basis result in the matrix equation

I3 �G � P� ¼ I3, since the coordinate columns of the basis

a; b; c with respect to itself are the rows of the identity matrix I3,

and P� was just defined to contain the coordinate columns of

a�; b�; c�. But G � P� ¼ I3 means that P� ¼ G�1 and thus the

coordinate columns of a�; b�; c� with respect to the basis a; b; c

are precisely the columns of the inverse matrix G�1 of the metric

tensor G.

From P� ¼ G�1 one also derives that the metric tensor G� of

the reciprocal basis is

G� ¼ P�T �G � P� ¼ G�1 �G �G�1 ¼ G�1:

This means that the metric tensors of a basis and its reciprocal

basis are inverse matrices of each other. As a further conse-

quence, the volume V� of the unit cell spanned by the reciprocal

basis is V� ¼ V�1, i.e. the inverse of the volume of the unit cell

spanned by a; b; c.

Of course, the reciprocal basis can also be computed from

the vectors ai directly. If B and B� are the matrices containing

as ith column the vectors ai and a�i , respectively, then the

relation defining the reciprocal basis reads as BT � B� ¼ I3,

i.e. B� ¼ ðB�1Þ
T. Thus, the reciprocal basis vector a�i is the ith

column of the transposed matrix of B�1 and thus the ith

row of the inverse of the matrix B containing the ai as

columns.

The relations between the parameters of the unit cell spanned

by the reciprocal basis vectors and those of the unit cell spanned

by the original basis can either be obtained from the vector

product expressions for a�, b�, c� or by explicitly inverting the

metric tensor G (e.g. using Cramer’s rule). The latter approach

would also be applicable in n-dimensional space. Either way, one

finds

a� ¼
bc sin �

V
; b� ¼

ca sin �

V
; c� ¼

ab sin �

V
;

sin �� ¼
V

abc sin� sin �
; cos�� ¼

cos � cos � � cos �

sin � sin �
;

sin �� ¼
V

abc sin � sin �
; cos�� ¼

cos � cos�� cos �

sin � sin �
;

sin �� ¼
V

abc sin � sin �
; cos �� ¼

cos� cos �� cos �

sin � sin �
:
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1. INTRODUCTION TO SPACE-GROUP SYMMETRY

Examples

(i) The lattice L spanned by the vectors

a ¼

1

1

1

0
@

1
A; b ¼

1

1

0

0
@

1
A; c ¼

1

�1

0

0
@

1
A

has metric tensor

G ¼

3 2 0

2 2 0

0 0 2

0
@

1
A:

The inverse of the metric tensor is

G� ¼ G�1 ¼
1

2

2 �2 0

�2 3 0

0 0 1

0
@

1
A:

Interpreting the columns ofG�1 as coordinate vectors with

respect to the original basis, one concludes that the reci-

procal basis is given by

a� ¼ a � b; b� ¼ 1
2 ð�2a þ 3bÞ; c� ¼ 1

2 c:

Inserting the columns for a, b, c, one obtains

a� ¼

0

0

1

0
@

1
A; b� ¼

1

2

1

1

�2

0
@

1
A; c� ¼

1

2

1

�1

0

0
@

1
A:

For the direct computation, the matrix B with the basis

vectors a; b; c as columns is

B ¼

1 1 1

1 1 �1

1 0 0

0
@

1
A

and has as its inverse the matrix

B�1 ¼
1

2

0 0 2

1 1 �2

1 �1 0

0
@

1
A:

The rows of this matrix are indeed the vectors a�, b�, c� as

computed above.

(ii) The body-centred cubic lattice L has the vectors

a ¼
1

2

�1

1

1

0
@

1
A; b ¼

1

2

1

�1

1

0
@

1
A; c ¼

1

2

1

1

�1

0
@

1
A

as primitive basis.

The matrix

B ¼
1

2

�1 1 1

1 �1 1

1 1 �1

0
@

1
A

with the basis vectors a; b; c as columns has as its inverse

the matrix

B�1 ¼

0 1 1

1 0 1

1 1 0

0
@

1
A:

The rows of B�1 are the vectors

a� ¼

0

1

1

0
@

1
A; b� ¼

1

0

1

0
@

1
A; c� ¼

1

1

0

0
@

1
A;

showing that the reciprocal lattice of a body-centred cubic

lattice is a face-centred cubic lattice.

1.3.3. The structure of space groups

1.3.3.1. Point groups of space groups

The multiplication rule for symmetry operations

ðW 2; w2ÞðW 1; w1Þ ¼ ðW 2W 1; W 2w1 þ w2Þ

shows that the mapping � : ðW ;wÞ 7!W which assigns a space-

group operation to its linear part is actually a group homo-

morphism, because the first component of the combined

operation is simply the product of the linear parts of the two

operations. As a consequence, the linear parts of a space group

form a group themselves, which is called the point group of G. The

kernel of the homomorphism � consists precisely of the trans-

lations ðI; tÞ 2 T , and since kernels of homomorphisms are

always normal subgroups (cf. Section 1.1.6), the translation

subgroup T forms a normal subgroup of G. According to the

homomorphism theorem (see Section 1.1.6), the point group is

isomorphic to the factor group G=T .

Definition

The point group P of a space group G is the group of linear

parts of operations occurring in G. It is isomorphic to the factor

group G=T of G by the translation subgroup T .

When G is considered with respect to a coordinate system, the

operations of P are simply 3 � 3 matrices.

The point group plays an important role in the analysis of the

macroscopic properties of crystals: it describes the symmetry of

the set of face normals and can thus be directly observed. It is

usually obtained from the diffraction record of the crystal, where

adding the information about the translation subgroup explains

the sharpness of the Bragg peaks in the diffraction pattern.

Although we have already deduced that the translation

subgroup T of a space group G forms a normal subgroup in G

because it is the kernel of the homomorphism mapping each

operation to its linear part, it is worth investigating this fact by an

explicit computation. Let t ¼ ðI; tÞ be a translation in T and

W ¼ ðW ; wÞ an arbitrary operation in G, then one has

WtW�1 ¼ ðW ; wÞðI; tÞðW�1; �W�1wÞ

¼ ðW ; Wt þ wÞðW�1; �W�1wÞ

¼ ðI; �wþWt þ wÞ ¼ ðI; WtÞ;

which is again a translation in G, namely by Wt. This little

computation shows an important property of the translation

subgroup with respect to the point group, namely that every

vector from the translation lattice is mapped again to a lattice

vector by each operation of the point group of G.

Proposition. Let G be a space group with point group P and

translation subgroup T and let L ¼ ft j ðI; tÞ 2 T g be the lattice

of translations in T . Then P acts on the lattice L, i.e. for every

W 2 P and t 2 L one has Wt 2 L.

A point group that acts on a lattice is a subgroup of the full

group of symmetries of the lattice, obtained as the group of

orthogonal mappings that map the lattice to itself. With respect to

a primitive basis, the group of symmetries of a lattice consists of

all integral basis transformations that fix the metric tensor of the

lattice.
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