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1. INTRODUCTION TO SPACE-GROUP SYMMETRY
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Different choices of a basis for a point group in general result

in different matrix groups, and it is natural to consider two point

groups as equivalent if they are transformed into each other by a

basis transformation. This is entirely analogous to the situation of

space groups, where space groups that only differ by the choice of

coordinate system are regarded as equivalent. This notion of

equivalence is applied at both the level of space groups and point

groups.

Definition

Two space groups G and G
0 with point groups P and P

0,

respectively, are said to belong to the same geometric crystal

class if P and P
0 become the same matrix group once suitable

bases for the three-dimensional space are chosen.

Equivalently, G and G
0 belong to the same geometric crystal

class if the point group P
0 can be obtained from P by a basis

transformation of the underlying vector space V3, i.e. if there is

an invertible 3 � 3 matrix P such that

P
0
¼ fP�1WP j W 2 Pg:

Also, two matrix groups P and P
0 are said to belong to the

same geometric crystal class if they are conjugate by an

invertible 3 � 3 matrix P.

Historically, the geometric crystal classes in dimension 3 were

determined much earlier than the space groups. They were

obtained as the symmetry groups for the set of normal vectors of

crystal faces which describe the morphological symmetry of

crystals.

Note that for the geometric crystal classes in dimension 3 (and

in all other odd dimensions) the distinction between orientation-

preserving and orientation-reversing transformations is irrele-

vant, since any conjugation by an arbitrary transformation can

already be realized by an orientation-preserving transformation.

This is due to the fact that the inversion �I on the one hand

commutes with every matrix W, i.e. ð�IÞW ¼ W ð�IÞ, and on the

other hand detð�IÞ ¼ �1. If P is orientation reversing, one has

detP< 0 and then ð�IÞP ¼ �P is orientation preserving

because detð�PÞ ¼ � detP> 0. But ð�PÞ
�1
W ð�PÞ ¼ P�1WP,

hence the transformations by P and �P give the same result and

one of P and �P is orientation preserving.

Remark: One often speaks of the geometric crystal classes as

the types of point groups. This emphasizes the point of view in

which a point group is regarded as the group of linear parts of a

space group, written with respect to an arbitrary basis of Rn (not

necessarily a lattice basis).

It is also common to state that there are 32 point groups in

three-dimensional space. This is just as imprecise as saying that

there are 230 space groups, since there are in fact infinitely many

point groups and space groups.

What is meant when we say that two space groups have the

same point group is usually that their point groups are of the same

type (i.e. lie in the same geometric crystal class) and can thus be

made to coincide by a suitable basis transformation.

Example

In the space group P3 the threefold rotation generating the

point group is given by the matrix

W ¼

0 �1 0

1 �1 0

0 0 1

0
@

1
A;

whereas in the space group R3 (in the rhombohedral setting)

the threefold rotation is given by the matrix

W 0 ¼

0 0 1

1 0 0

0 1 0

0
@

1
A:

These two matrices are conjugate by the basis transformation

P ¼
1

3

1 0 �1

0 1 �1

1 1 1

0
@

1
A;

which transforms the basis of the hexagonal setting into that of

the rhombohedral setting. This shows that the space groups P3

and R3 belong to the same geometric crystal class.

The example is typical in the sense that different groups in the

same geometric crystal class usually describe the same group of

linear parts acting on different lattices, e.g. primitive and centred.

Writing the action of the linear parts with respect to primitive

bases of different lattices gives rise to different matrix groups.

1.3.4.3. Bravais types of lattices and Bravais classes

In the classification of space groups into geometric crystal

classes, only the point-group part is considered and the transla-

tion lattice is ignored. It is natural that the converse point of view

is also adopted, where space groups are grouped together

according to their translation lattices, irrespective of what the

point groups are.

We have already seen that a lattice can be characterized by its

metric tensor, containing the scalar products of a primitive basis.

If a point group P acts on a lattice L, it fixes the metric tensor G

of L, i.e. WT �G �W ¼ G for allW in P and is thus a subgroup of

the Bravais group AutðLÞ of L. Also, a matrix group B is called a

Bravais group if it is the Bravais group AutðLÞ for some lattice L.

The Bravais groups govern the classification of lattices.

Definition

Two lattices L and L0 belong to the same Bravais type of lattices

if their Bravais groups AutðLÞ and AutðL0Þ are the same matrix

group when written with respect to suitable primitive bases of

L and L0.

Note that in order to have the same Bravais group, the metric

tensors of the two lattices L and L0 do not have to be the same or

scalings of each other.

Example

The mineral rutile (TiO2) has a space group of type P42=mnm

(136) with a primitive tetragonal cell with cell parameters a = b

= 4.594 Å and c = 2.959 Å. The metric tensor of the translation

lattice L is therefore

G ¼

4:5942 0 0

0 4:5942 0

0 0 2:9592

0
@

1
A

and the Bravais group of the lattice is generated by the four-

fold rotation

0 �1 0

1 0 0

0 0 1

0
@

1
A
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in the plane x = 0 and the reflection

1 0 0

0 1 0
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in the plane z = 0.

The silicate mineral cristobalite also has (at low temperatures)

a primitive tetragonal cell with a = b = 4.971 Å and c = 6.928 Å,

and the space-group type is P41212 (92). In this case the metric

tensor of the translation lattice L0 is

G0 ¼

4:9712 0 0

0 4:9712 0

0 0 6:9282

0
@

1
A

and one checks that the Bravais group of L0 is precisely the

same as that of L. Therefore, the translation lattices L for rutile

and L0 for cristobalite belong to the same Bravais type of

lattices.

The different Bravais types of lattices, their cell parameters

and metric tensors are displayed in Tables 3.1.2.1 (dimension

2) and 3.1.2.2 (dimension 3): in dimension 2 there are 5

Bravais types and in dimension 3 there are 14 Bravais types of

lattices.

It is crucial for the classification of lattices via their Bravais

groups that one works with primitive bases, because a primitive

and a body-centred cubic lattice have the same automorphisms

when written with respect to the conventional cubic basis, but are

clearly different types of lattices.

Example

The silicate mineral zircon (ZrSiO4) has a body-centred

tetragonal cell with cell parameters a = b = 6.607 Å and c =

5.982 Å. The body-centred translation lattice L0 is spanned

by the primitive tetragonal lattice L with basis a; b; c with

� ¼ � ¼ � ¼ 90� and the centring vector v ¼ 1
2 ða þ b þ cÞ.

A primitive basis of L0 is obtained as ða0; b0; c0Þ ¼ ða; b; cÞP

with

P ¼
1

2

�1 1 1

1 �1 1

1 1 �1

0
@

1
A;

i.e. a0 ¼ 1
2 ð�a þ b þ cÞ ¼ �a þ v, b0 ¼ 1

2 ða � b þ cÞ ¼ �b þ v,

c0 ¼ 1
2 ða þ b � cÞ ¼ �c þ v and the metric tensor G0 of L0 with

respect to the primitive basis a0; b0; c0 is

G0 ¼ PT

6:6072 0 0

0 6:6072 0

0 0 5:9822

0
B@

1
CAP

¼

5:5472 �12:880 �8:946

�12:880 5:5472 �8:946

�8:946 �8:946 5:5472

0
B@

1
CA:

The Bravais group of the primitive tetragonal lattice L is

generated (as in the previous example) by

W 1 ¼

0 �1 0

1 0 0

0 0 1

0
B@

1
CA; W 2 ¼

�1 0 0

0 1 0

0 0 1

0
B@

1
CA

and W 3 ¼

1 0 0

0 1 0

0 0 �1

0
B@

1
CA;

and these matrices also generate the Bravais group of the

body-centred tetragonal lattice L0, but written with respect

to the primitive basis a0; b0; c0 these matrices are transformed

to

W 0
1 ¼ P�1W 1P ¼

0 1 0

0 1 �1

�1 1 0

0
B@

1
CA;

W 0
2 ¼ P�1W 2P ¼

1 0 0

1 0 �1

1 �1 0

0
B@

1
CA and

W 0
3 ¼ P�1W 3P ¼

0 �1 1

�1 0 1

0 0 1

0
B@

1
CA:

That the primitive and the body-centred tetragonal lattices

have different types ultimately follows from the fact that the

body-centred lattice L0 does not have a primitive basis

consisting of vectors a00; b00; c00 which are pairwise perpendi-

cular and such that a00 and b00 have the same length. This would

be required to have the matricesW 1,W 2 andW 3 in the Bravais

group of L0.

As we have seen, the metric tensors of lattices belonging to the

same Bravais type need not be the same, but if they are written

with respect to suitable bases they are found to have the same

structure, differing only in the specific values for certain free

parameters.

Definition

Let L be a lattice with metric tensor G with respect

to a primitive basis and let B = AutðLÞ =

fW 2 GL3ðZÞ j W
T �G �W ¼ Gg be the Bravais group of L.

Then

MðBÞ :¼ fG0 symmetric 3� 3 matrix j

WT �G0 �W ¼ G0 for all W 2 Bg

is called the space of metric tensors of B. The dimension of

MðBÞ is called the number of free parameters of the lattice L.

Analogously, for an arbitrary integral matrix group P,

MðPÞ :¼ fG0 symmetric 3� 3 matrix j

WT �G0 �W ¼ G0 for all W 2 Pg

is called the space of metric tensors of P. If dimMðP
0
Þ =

dimMðPÞ for a subgroup P
0 of P, the spaces of metric tensors

are the same for both groups and one says that P0 does not act

on a more general lattice than P does.

It is clear that MðBÞ contains in particular the metric tensor G

of the lattice L of which B is the Bravais group. Moreover, B is a

subgroup of the Bravais group of every lattice with metric tensor

in MðBÞ.
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Example

Let L be a lattice with metric tensor

17 0 0

0 17 0

0 0 42

0
@

1
A;

then L is a tetragonal lattice with Bravais group B of type

4/mmm generated by the fourfold rotation

W 1 ¼

0 �1 0

1 0 0

0 0 1

0
@

1
A

and the reflections

W 2 ¼

�1 0 0

0 1 0

0 0 1

0
@

1
A and W 3 ¼

1 0 0

0 1 0

0 0 �1

0
@

1
A:

The space of metric tensors of B is

MðBÞ ¼

g11 0 0

0 g11 0

0 0 g33

0
@

1
A j g11; g33 2 R

8<
:

9=
;

and the number of free parameters of L is 2.

For every lattice L0 with metric tensor G0 in MðBÞ such that

g11 6¼ g33, one can check that the Bravais group of L0 is equal to

B, hence these lattices belong to the same Bravais type of

lattices as L. On the other hand, if it happens that g11 ¼ g33 in

the metric tensorG0 of a lattice L0, then the Bravais group of L0

is the full cubic point group of type m�3m and B is a proper

subgroup of the Bravais group of L0. In this case the lattice L0 is

of a different Bravais type to L, namely cubic.

The subgroup P of B generated only by the fourfold rotation

W 1 has the same space of metric tensors as B, thus this

subgroup acts on the same types of lattices as B (i.e. tetragonal

lattices). On the other hand, for the subgroup P
0 of B gener-

ated by the reflections W 2 and W 3, the space of metric tensors

is

MðP
0
Þ ¼

g11 0 0

0 g22 0

0 0 g33

0
@

1
A j g11; g22; g33 2 R

8<
:

9=
;

and is thus of dimension 3. This shows that the subgroup P
0

acts on more general lattices than B, namely on orthorhombic

lattices.

Remark: The metric tensor of a lattice basis is a positive defi-

nite2 matrix. It is clear that not all matrices in MðBÞ are positive

definite [if G 2 MðBÞ is positive definite, then �G is certainly not

positive definite], but the different geometries of lattices on

which B acts are represented precisely by the positive definite

metric tensors in MðBÞ.

The space of metric tensors obtained from a lattice can be

interpreted as an expression of the metric tensor with general

entries, i.e. as a generic metric tensor describing the different

lattices within the same Bravais type. Special choices for the

entries may lead to lattices with accidental higher symmetry,

which is in fact a common phenomenon in phase transitions

caused by changes of temperature or pressure.

One says that the translation lattice L of a space group G with

point group P has a specialized metric if the dimension of the

space of metric tensors of B ¼ AutðLÞ is smaller than the

dimension of the space of metric tensors of P. Viewed from a

slightly different angle, a specialized metric occurs if the location

of the atoms within the unit cell reduces the symmetry of the

translation lattice to that of a different lattice type.

Example

A space group G of type P2/m (10) with cell parameters a = 4.4,

b = 5.5, c = 6.6 Å, � ¼ � ¼ � ¼ 90� has a specialized metric,

because the point group P of type 2/m is generated by

W ¼

�1 0 0

0 1 0

0 0 �1

0
@

1
A

and �I, and has

MðPÞ ¼

g11 0 g13

0 g22 0

g13 0 g33

0
@

1
A j g11; g22; g33; g13 2 R

8<
:

9=
;

as its space of metric tensors, which is of dimension 4. The

lattice L with the given cell parameters, however, is ortho-

rhombic, since the free parameter g13 is specialized to g13 ¼ 0.

The automorphism group AutðLÞ is of type mmm and has a

space of metric tensors of dimension 3, namely

g11 0 0

0 g22 0

0 0 g33

0
@

1
A j g11; g22; g33 2 R

8<
:

9=
;:

The higher symmetry of the translation lattice would, for

example, be destroyed by an atomic configuration compatible

with the lattice and represented by only two atoms in the unit

cell located at 0.17, 1/2, 0.42 and 0.83, 1/2, 0.58. The two atoms

are related by a twofold rotation around the b axis, which

indicates the invariance of the configuration under twofold

rotations with axes parallel to b, but in contrast to the lattice L,

the atomic configuration is not compatible with rotations

around the a or the c axes.

By looking at the spaces of metric tensors, space groups can be

classified according to the Bravais types of their translation

lattices, without suffering from complications due to specialized

metrics.

Definition

Let L be a lattice with metric tensor G and Bravais group

B ¼ AutðLÞ and let MðBÞ be the space of metric tensors

associated to L. Then those space groups G form the Bravais

class corresponding to the Bravais type of L for which

MðPÞ ¼ MðBÞ when the point group P of G is written with

respect to a suitable primitive basis of the translation lattice of

G. The names for the Bravais classes are the same as those for

the corresponding Bravais types of lattices.

The Bravais groups of lattices provide a link between lattices

and point groups, the two building blocks of space groups.

However, although the Bravais group of a lattice is simply a

matrix group, the fact that it is expressed with respect to a

primitive basis and fixes the metric tensor of the lattice preserves

the necessary information about the lattice. When the Bravais

group is regarded as a point group, the information about the

lattice is lost, since point groups can be written with respect to an

arbitrary basis. In order to distinguish Bravais groups of lattices

at the level of point groups and geometric crystal classes, the

concept of a holohedry is introduced.2 A symmetric matrix G is positive definite if vT �G � v> 0 for every vector v 6¼ 0.
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Definition

The geometric crystal class of a point group P is called a

holohedry (or lattice point group, cf. Chapters 3.1 and 3.3) if P

is the Bravais group of some lattice L.

Example

LetP be the point group of type �3m generated by the threefold

rotoinversion

W 1 ¼

0 1 0

�1 1 0

0 0 �1

0
@

1
A

around the z axis and the twofold rotation

W 2 ¼

1 �1 0

0 �1 0

0 0 �1

0
@

1
A;

expressed with respect to the conventional basis a; b; c of a

hexagonal lattice. The group P is not the Bravais group of the

lattice L spanned by a; b; c because this lattice also allows a

sixfold rotation around the z axis, which is not contained in

P. But P also acts on the rhombohedrally centred lattice L0

with primitive basis a0 ¼ 1
3 ð2a þ b þ cÞ, b0 ¼ 1

3 ð�a þ b þ cÞ,

c0 ¼ 1
3 ð�a � 2b þ cÞ. With respect to the basis a0; b0; c0 the

rotoinversion and twofold rotation are transformed to

W 0
1 ¼

0 0 �1

�1 0 0

0 �1 0

0
@

1
A and W 0

2 ¼

0 �1 0

�1 0 0

0 0 �1

0
@

1
A;

and these matrices indeed generate the Bravais group of L0.

The geometric crystal class with symbol �3m is therefore a

holohedry.

Note that in dimension 3 the above is actually the only

example of a geometric crystal class in which the point groups are

Bravais groups for some but not for all the lattices on which they

act. In all other cases, each matrix group P corresponding to a

holohedry is actually the Bravais group of the lattice spanned by

the basis with respect to which P is written.

1.3.4.4. Other classifications of space groups

In this section we summarize a number of other classification

schemes which are perhaps of slightly lower significance than

those of space-group types, geometric crystal classes and Bravais

types of lattices, but also play an important role for certain

applications.

1.3.4.4.1. Arithmetic crystal classes

We have already seen that every space group can be assigned

to a symmorphic space group in a natural way by setting the

translation parts of coset representatives with respect to the

translation subgroup to o. The groups assigned to a symmorphic

space group in this way all have the same translation lattice and

the same point group but the different possibilities for the

interplay between these two parts are ignored.

If we want to collect together all space groups that correspond

to symmorphic space groups of the same type, we arrive at the

classification into arithmetic crystal classes. This can also be seen

as a classification of the symmorphic space-group types. The

distribution of the space groups into arithmetic classes, repre-

sented by the corresponding symmorphic space-group types, is

given in Table 2.1.3.3.

The crucial observation for characterizing this classification is

that space groups that correspond to the same symmorphic space

group all have translation lattices of the same Bravais type. This

means that the freedom in the choice of a basis transformation of

the underlying vector space is restricted, because a primitive basis

has to be mapped again to a primitive basis. Assuming that the

point groups are written with respect to primitive bases, this

means that the basis transformation is an integral matrix with

determinant �1.

Definition

Two space groups G and G
0 with point groups P and P

0,

respectively, both written with respect to primitive bases of

their translation lattices, are said to lie in the same arithmetic

crystal class if P0 can be obtained from P by an integral basis

transformation of determinant �1, i.e. if there is an integral

3 � 3 matrix P with detP ¼ �1 such that

P
0
¼ fP�1WP j W 2 Pg:

Also, two integral matrix groups P and P0 are said to belong to

the same arithmetic crystal class if they are conjugate by an

integral 3 � 3 matrix P with detP ¼ �1.

Example

Let

M1 ¼

�1 0 0

0 1 0

0 0 1

0
B@

1
CA; M2 ¼

1 0 0

0 �1 0

0 0 1

0
B@

1
CA

and M3 ¼

0 1 0

1 0 0

0 0 1

0
B@

1
CA

be reflections in the planes x = 0, y = 0 and x = y, respectively,

and let P1 ¼ hM1i, P2 ¼ hM2i and P3 ¼ hM3i be the integral

matrix groups generated by these reflections. Then P1 and P2

belong to the same arithmetic crystal class because they are

transformed into each other by the basis transformation

P ¼

0 1 0

1 0 0

0 0 1

0
@

1
A

interchanging the x and y axes. But P3 belongs to a different

arithmetic crystal class, because M3 is not conjugate to M1 by

an integral matrix P of determinant �1. The two groups P1

and P3 belong, however, to the same geometric crystal class,

because M1 and M3 are transformed into each other by the

basis transformation

P ¼

1
2 � 1

2 0
1
2

1
2 0

0 0 1

0
@

1
A;

which has determinant 1
2. This basis transformation shows that

M1 and M3 can be interpreted as the action of the same

reflection on a primitive lattice and on a C-centred lattice.

As explained above, the number of arithmetic crystal classes is

equal to the number of symmorphic space-group types: in

dimension 2 there are 13 such classes, in dimension 3 there are 73

arithmetic crystal classes. The Hermann–Mauguin symbol of the

symmorphic space-group type to which a space group G belongs

is obtained from the symbol for the space-group type of G by

replacing any screw-rotation axis symbol Nm by the corre-

references

http://it.iucr.org/Ac/ch1o3v0001/references/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [641.000 859.000]
>> setpagedevice


