International Tables for Crystallography (2016). Vol. A, Section 1.4.1.4.7.3, p. 48.

1. INTRODUCTION TO SPACE-GROUP SYMMETRY

 $P\overline{3}12/m$ etc. In the short HM symbol the '2/' is not kept: $P\overline{3}m1$ or $P\overline{3}1m$ etc.

Table 1.4.1.2

The structure of the Hermann-Mauguin symbols for the plane groups

1.4.1.4.7.2. Hexagonal space groups

Hexagonal space groups have either one or three representative symmetry directions. The space groups of crystal classes 6, $\overline{6}$ and 6/m have [001] as their single symmetry direction for the axis 6 or 6_k for k = 1, ..., 5 or $\overline{6}$, and for the plane *m* with its normal along [001]. The short and full HM symbols are the same. Examples are P6, $P6_4$, $P\overline{6}$ and $P6_3/m$.

Space groups of crystal classes 622, 6mm, $\overline{6}2m$ and 6/m 2/m 2/m have the representative symmetry directions [001], [100] and [110]. As opposed to the trigonal HM symbols, in the hexagonal HM symbols no symmetry direction is 'empty' and occupied by '1'.

In space groups of the crystal classes 622, 6mm and $\overline{6}2m$ the short and full HM symbols are the same; in 6/m 2/m 2/m the short symbols are deprived of the parts '2/' of the full symbols. The full HM symbol $P6_3/m 2/m 2/c$ is shortened to the short HM symbol $P6_3/mmc$, the full HM symbol $P6_3/m 2/c 2/m$ is shortened to $P6_3/mmc$. The two denote different space-group types.

1.4.1.4.7.3. Rhombohedral space groups

The rhombohedral lattice may be understood as an R-centred hexagonal lattice and then referred to the hexagonal basis. It has two kinds of symmetry directions, which coincide with the primary and secondary symmetry directions of the hexagonal lattice (owing to the R centrings, no symmetry operation along the tertiary symmetry direction of the hexagonal lattice is compatible with the rhombohedral lattice). On the other hand, the rhombohedral lattice may be referred to a (primitive) rhombohedral coordinate system with the lattice parameters a =b = c and $\alpha = \beta = \gamma$. The HM symbol of a rhombohedral space group starts with R, its representative symmetry directions are $[001]_{hex}$ or $[111]_{rhomb}$ and $[100]_{hex}$ or $[1\overline{10}]_{rhomb}$. In this section the rhombohedral primitive cell is used. The rotations 3 and the rotoinversions $\overline{3}$ are accompanied by screw rotations 3_1 and 3_2 . Rotations 2 about horizontal axes always alternate with 21 screw rotations and reflections m are accompanied by different glide reflections g with unconventional glide components. The additional operations mentioned are not listed in the full HM symbols.

The seven rhombohedral space groups belong to the five crystal classes 3, $\overline{3}$, 32, 3m and $\overline{3}2/m$. In R3 and R $\overline{3}$ only the first of the symmetry directions is occupied and listed in the full and short HM symbols. In the space groups of the other crystal classes the second symmetry direction [1 $\overline{10}$] is occupied by '2' or 'm' or 'c' or '2/m' or '2/c', leading to the full HM symbols R32, R3m, R3c, R $\overline{3}2/m$ and R $\overline{3}2/c$. In the short HM symbols the '2/' parts of the last two symbols are skipped: R $\overline{3}m$ and R $\overline{3}c$.

1.4.1.4.8. Cubic space groups

There are five cubic crystal classes combined with the three types of lattices P, F and I in which the cubic space groups are classified. The two symmetry directions [100] and [111] are the representative directions in the space groups of the crystal classes 23 and $2/m \overline{3}$. A third representative symmetry direction, [1 $\overline{10}$], is added for space groups of the crystal classes 432, $\overline{43m}$ and $4/m \overline{3} 2/m.^{6}$

The positions of the representative symmetry directions for the crystal systems are given. The lattice symbol and the maximal order of rotations around a point are followed by two positions for symmetry directions.

Crystal system	Lattice(s)	First position	Second position	Third position
Oblique	р	1 or 2	_	_
Rectangular	<i>p</i> , <i>c</i>	1 or 2	а	b
Tetragonal	р	4	a	a – b
Hexagonal	р	3	a	1
			or	
		3	1	a — b
		6	a	a – b

In the full HM symbol the symmetry is described as usual. Examples are $P2_13$, $F2/d\overline{3}$, $P4_332$, $F\overline{4}3c$, $P4_2/m\overline{3}2/n$ and finally No. 230, $I4_1/a\overline{3}2/d$. The short HM symbols of the noncentrosymmetric space groups (those of crystal classes 23, 432 and $\overline{4}3m$) are the same as the full HM symbols. In the short HM symbols of centrosymmetric space groups of the crystal classes $2/m\overline{3}$ and $4/m\overline{3}2/m$ the rotations or screw rotations are omitted with the exception of the rotations 3 and rotoinversions $\overline{3}$ which represent the symmetry in direction [111]. Thus, in the examples listed above, $Fd\overline{3}$, $Pm\overline{3}n$ and $Ia\overline{3}d$ are the short HM symbols differing from the full HM symbols.

As in the orthorhombic space groups I222 and $I2_12_12_1$, there is the pair I23 and $I2_13$ in which the 'simplest symmetry operation' rule is violated. In both space groups twofold rotations and screw rotations around **a**, **b** and **c** occur simultaneously. In I23 the rotation axes intersect, in $I2_13$ they do not. The first space group can be generated by adding the *I*-centring to the space group P23, the second is obtained by adding the *I*-centring to the space group $P2_13$.

1.4.1.5. Hermann-Mauguin symbols of the plane groups

The principles of the HM symbols for space groups are retained in the HM symbols for plane groups (also known as *wallpaper groups*). The rotation axes along **c** of three dimensions are replaced by *rotation points* in the **ab** plane; the possible orders of rotations are the same as in three-dimensional space: 2, 3, 4 and 6. The lattice (sometimes called *net*) of a plane group is spanned by the two basis vectors **a** and **b**, and is designated by a lower-case letter. The choice of a lattice basis, *i.e.* of a minimal cell, leads to a primitive lattice p, in addition a c-centred lattice is conventionally used. The nets are listed in Table 3.1.2.1. The reflections and glide reflections through planes of the space groups are replaced by *reflections and glide reflections through lines*. Glide reflections are called g independent of the direction of the glide line. The arrangement of the constituents in the HM symbol is displayed in Table 1.4.1.2.

Short HM symbols are used only if there is at most one symmetry direction, *e.g.* p411 is replaced by p4 (no symmetry direction), p1m1 is replaced by pm (one symmetry direction) *etc.*

There are four crystal systems of plane groups, *cf.* Table 3.2.3.1. The analogue of the triclinic crystal system is called *oblique*, the analogues of the monoclinic and orthorhombic crystal systems are *rectangular*. Both have rotations of order 2 at most. The presence of reflection or glide reflection lines in the rectangular crystal system allows one to choose a rectangular basis with one basis vector perpendicular to a symmetry line and one basis

⁶ Note: '3' or ' $\overline{3}$ ' directly after the lattice symbol denotes a trigonal or rhombohedral space group; '3' or ' $\overline{3}$ ' in the third position (second position after the lattice symbol) is characteristic for cubic space groups.