International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by M. I. Aroyo

International Tables for Crystallography (2015). Vol. A, ch. 1.4, p. 54

Table 1.4.2.6 

M. I. Aroyo,a G. Chapuis,b B. Souvignierd and A. M. Glazerc

Table 1.4.2.6| top | pdf |
Right coset decomposition of space group [P2_1/c], No. 14 (unique axis b, cell choice 1) with respect to the normal subgroup of translations [{\cal T}]

The numbers [u_1], [u_2] and [u_3] are positive or negative integers.

x y z [\bar{x}] [y+\textstyle{{1 \over 2}}] [\bar{z}+\textstyle{{1 \over 2}}] [\bar{x}] [\bar{y}] [\bar{z}] x [\bar{y}+\textstyle{{1 \over 2}}] [z+\textstyle{{1 \over 2}}]
x + 1 y z [\bar{x}+1] [y+\textstyle{{1 \over 2}}] [\bar{z}+\textstyle{{1 \over 2}}] [\bar{x}+1] [\bar{y}] [\bar{z}] x + 1 [\bar{y}+\textstyle{{1 \over 2}}] [z+\textstyle{{1 \over 2}} ]
x + 2 y z [\bar{x}+2] [y+\textstyle{{1 \over 2}}] [\bar{z}+\textstyle{{1 \over 2}}] [\bar{x}+2] [\bar{y}] [\bar{z}] x + 2 [\bar{y}+\textstyle{{1 \over 2}}] [z+\textstyle{{1 \over 2}} ]
  [\vdots]     [\vdots]     [\vdots]     [\vdots]  
x y + 1 z [\bar{x}] [y+\textstyle{{3}\over {2}}] [\bar{z}+\textstyle{{1 \over 2}}] [\bar{x}] [\bar{y}+1] [\bar{z}] x [\bar{y}+\textstyle{{3}\over {2}}] [z+\textstyle{{1 \over 2}} ]
x + 1 y + 1 z [\bar{x}+1] [y+\textstyle{{3}\over {2}}] [\bar{z}+\textstyle{{1 \over 2}}] [\bar{x}+1] [\bar{y}+1] [\bar{z}] x + 1 [\bar{y}+\textstyle{{3}\over {2}}] [z+\textstyle{{1 \over 2}} ]
x + 2 y + 1 z [\bar{x}+2] [y+\textstyle{{3}\over {2}}] [\bar{z}+\textstyle{{1 \over 2}}] [\bar{x}+2] [\bar{y}+1] [\bar{z}] x + 2 [\bar{y}+\textstyle{{3}\over {2}}] [z+\textstyle{{1 \over 2}} ]
  [\vdots]     [\vdots]     [\vdots]     [\vdots]  
x y + 2 z [\bar{x}] [y+\textstyle{{5}\over {2}}] [\bar{z}+\textstyle{{1 \over 2}}] [\bar{x}] [\bar{y}+2] [\bar{z}] x [\bar{y}+\textstyle{{5}\over {2}}] [z+\textstyle{{1 \over 2}} ]
x + 1 y + 2 z [\bar{x}+1] [y+\textstyle{{5}\over {2}}] [\bar{z}+\textstyle{{1 \over 2}}] [\bar{x}+1] [\bar{y}+2] [\bar{z}] x + 1 [\bar{y}+\textstyle{{5}\over {2}}] [z+\textstyle{{1 \over 2}} ]
x + 2 y + 2 z [\bar{x}+2] [y+\textstyle{{5}\over {2}}] [\bar{z}+\textstyle{{1 \over 2}}] [\bar{x}+2] [\bar{y}+2] [\bar{z}] x + 2 [\bar{y}+\textstyle{{5}\over {2}}] [z+\textstyle{{1 \over 2}} ]
  [\vdots]     [\vdots]     [\vdots]     [\vdots]  
x y z + 1 [\bar{x}] [y+\textstyle{{1 \over 2}}] [\bar{z}+\textstyle{{3}\over {2}}] [\bar{x}] [\bar{y}] [\bar{z}+1] x [\bar{y}+\textstyle{{1 \over 2}}] [z+\textstyle{{3}\over {2}}]
x + 1 y z + 1 [\bar{x}+1] [y+\textstyle{{1 \over 2}}] [\bar{z}+\textstyle{{3}\over {2}}] [\bar{x}+1] [\bar{y}] [\bar{z}+1] x + 1 [\bar{y}+\textstyle{{1 \over 2}}] [z+\textstyle{{3}\over {2}}]
x + 2 y z + 1 [\bar{x}+2] [y+\textstyle{{1 \over 2}}] [\bar{z}+\textstyle{{3}\over {2}}] [\bar{x}+2] [\bar{y}] [\bar{z}+1] x + 2 [\bar{y}+\textstyle{{1 \over 2}}] [z+\textstyle{{3}\over {2}}]
  [\vdots]     [\vdots]     [\vdots]     [\vdots]  
x y + 1 z + 1 [\bar{x}] [y+\textstyle{{3}\over {2}}] [\bar{z}+\textstyle{{3}\over {2}}] [\bar{x}] [\bar{y}+1] [\bar{z}+1] x [\bar{y}+\textstyle{{3}\over {2}}] [z+\textstyle{{3}\over {2}}]
x + 1 y + 1 z + 1 [\bar{x}+1] [y+\textstyle{{3}\over {2}}] [\bar{z}+\textstyle{{3}\over {2}}] [\bar{x}+1] [\bar{y}+1] [\bar{z}+1] x + 1 [\bar{y}+\textstyle{{3}\over {2}}] [z+\textstyle{{3}\over {2}}]
x + 2 y + 1 z + 1 [\bar{x}+2] [y+\textstyle{{3}\over {2}}] [\bar{z}+\textstyle{{3}\over {2}}] [\bar{x}+2] [\bar{y}+1] [\bar{z}+1] x + 2 [\bar{y}+\textstyle{{3}\over {2}}] [z+\textstyle{{3}\over {2}}]
  [\vdots]     [\vdots]     [\vdots]     [\vdots]  
[x+u_1] [y+u_2] [z+u_3] [\bar{x}+u_1] [y+u_2+\textstyle{{1 \over 2}}] [\bar{z}+u_3+\textstyle{{1 \over 2}}] [\bar{x}+u_1] [\bar{y}+u_2] [\bar{z}+u_3] [x+u_1] [\bar{y}+u_2+\textstyle{{1 \over 2}}] [z+u_3+\textstyle{{1 \over 2}} ]
  [\vdots]     [\vdots]     [\vdots]     [\vdots]