International Tables for Crystallography (2016). Vol. A, ch. 2.1, pp. 142-174
https://doi.org/10.1107/97809553602060000926

Chapter 2.1. Guide to the use of the space-group tables

Chapter index

absences
structural (non-space-group) 2.1.3.13
systematic 2.1.3.13
anorthic (triclinic) system 2.1.1.1
arithmetic crystal class 2.1.3.5, 2.1.3.3
asymmetric unit 2.1.3.8
axis
metric conventions for labelling 2.1.3.15
of rotoinversion 2.1.2.1
basis
crystallographic 2.1.1.2
reduced 2.1.3.15
black and white symmetry 2.1.3.5
Blickrichtung (symmetry direction) 2.1.3.4, 2.1.3.1
Bravais–Miller indices 2.1.3.13
Bravais system 2.1.1.1
Bravais type of lattice 2.1.1.1, 2.1.1.1, 2.1.3.5, 2.1.1.1
hexagonal 2.1.1.2
rhombohedral 2.1.1.2
cell
conventional 2.1.1.2
cell parameters 2.1.1.2, 2.1.3.9
restrictions on 2.1.1.1
S centring 2.1.1.1
symbols for 2.1.1.2, 2.1.3.12
centred lattice 2.1.3.6
centre of antisymmetry 2.1.3.5, 2.1.3.3
colour symmetry 2.1.3.5
computer programs
SPACER 2.1.4
conjugate subgroups 2.1.3.12
conventional cell 2.1.1.2
conventional coordinate system 2.1.1.2, 2.1.1.1
coordinate system
conventional 2.1.1.2, 2.1.1.1
crystallographic 2.1.1.2
hexagonal 2.1.1.2
rhombohedral 2.1.1.2, 2.1.1.2, 2.1.1.2
coordinate triplet 2.1.3.11, 2.1.3.11
crystal class 2.1.1.1
crystal family 2.1.1.1, 2.1.1.1
hexagonal 2.1.1.1, 2.1.1.2, 2.1.1.1
crystallographic basis 2.1.1.2
crystallographic coordinate system 2.1.1.2
crystal system 2.1.1.1, 2.1.1.1
hexagonal 2.1.1.1
cubic point groups 2.1.1.1
cubic space groups 2.1.3.4
diagrams for 2.1.3.6.7, 2.1.3.6.8
diagrams of 2.1.4
defining operation 2.1.2
defining symmetry operation 2.1.2.1
e-glide plane 2.1.2, 2.1.2.2, 2.1.2.3, 2.1.2.4
element set 2.1.2
extended Hermann–Mauguin space-group symbols 2.1.3.4
Fourier synthesis 2.1.3.8
Friedel opposites 2.1.3.5
general position 2.1.3.9, 2.1.3.10, 2.1.3.11, 2.1.3.11
diagrams of 2.1.3.6.8
general reflection conditions 2.1.3.13, 2.1.3.13
generators 2.1.3.10
glide reflection 2.1.2.1
H and h cell (hexagonal lattice) 2.1.3.14, 2.1.1.2, 2.1.1.2, 2.1.3.6
Hermann–Mauguin plane-group symbols 2.1.3.3, 2.1.3.3, 2.1.3.3, 2.1.3.4
changes of 2.1.3.4, 2.1.3.2
Hermann–Mauguin space-group symbols 2.1.3.3, 2.1.3.3, 2.1.3.3, 2.1.3.4, 2.1.3.15, 2.1.3.15, 2.1.3.4
changes of 2.1.2, 2.1.3.4, 2.1.3.4
extended 2.1.3.4
hexagonal axes, cell and coordinate system 2.1.1.2, 2.1.1.1, 2.1.1.2
hexagonal Bravais lattice 2.1.1.2
hexagonal crystal family 2.1.1.1, 2.1.1.2, 2.1.1.1
hexagonal crystal system 2.1.1.1
hexagonal point groups 2.1.1.1, 2.1.1.1
hexagonal space groups
diagrams for 2.1.3.6.5
holohedral point group 2.1.1.1
integral reflection conditions 2.1.3.13, 2.1.3.6
international space-group symbols 2.1.3.3, 2.1.3.3, 2.1.3.3, 2.1.3.4
inversion centre 2.1.2.1, 2.1.2.5
lattice
centred 2.1.3.6
lattice parameters 2.1.1.2
lattice point symmetry 2.1.1.1
lattice system 2.1.1.1
Laue class 2.1.3.5
Laue group 2.1.1.1
line groups 2.1.3.16, 2.1.1.1
symmetry elements and operations of 2.1.2.1
matrix representation of a symmetry operation 2.1.3.9
metric conventions for labelling of axes 2.1.3.15
mirror plane 2.1.2.1
mirror point 2.1.3.16
monoclinic crystal system 2.1.1.1
monoclinic point groups 2.1.1.1, 2.1.1.1
monoclinic settings and cell choices 2.1.3.2, 2.1.3.2, 2.1.3.2, 2.1.3.4, 2.1.3.6.3, 2.1.3.15, 2.1.3.15, 2.1.3.15, 2.1.1.1, 2.1.3.11
monoclinic space groups 2.1.3.2, 2.1.3.3, 2.1.3.15
diagrams for 2.1.3.6.3
symbols for 2.1.3.3, 2.1.3.4
multiplicity
of a Wyckoff position 2.1.3.11
non-characteristic orbit 2.1.3.13
obverse setting of R cell 2.1.3.2, 2.1.3.6.6, 2.1.1.2, 2.1.3.6
one-dimensional groups 2.1.3.16
orbit
non-characteristic 2.1.3.13
oriented site-symmetry symbol 2.1.3.12
orthorhombic crystal system 2.1.1.1
orthorhombic point groups 2.1.1.1, 2.1.1.1
orthorhombic settings 2.1.3.6.4
orthorhombic space groups 2.1.3.4
diagrams for 2.1.3.6.4
Patterson function 2.1.3.5, 2.1.3.3
Patterson symmetry 2.1.3.5, 2.1.3.3
diagrams for 2.1.3.6.1
reflection conditions 2.1.3.8
symbols, changes of 2.1.3.4
symmetry directions 2.1.3.1
symmetry elements and operations of 2.1.2.1, 2.1.2.5
point groups 2.1.1.1
holohedral 2.1.1.1
one-dimensional 2.1.3.16, 2.1.1.1
symbols for 2.1.1.1
symmetry elements and operations of 2.1.2.1, 2.1.2.5
point symmetry 2.1.3.12
of a lattice 2.1.1.1
position
primitive cell 2.1.1.2, 2.1.3.9, 2.1.3.13
projection
of a centred cell or lattice 2.1.3.14
of a symmetry element 2.1.3.14, 2.1.3.10
projection symmetry 2.1.3.14
R cell (rhombohedral lattice) 2.1.3.2, 2.1.3.2, 2.1.3.6.6, 2.1.1.2
reduced basis 2.1.3.15
reduced cell 2.1.3.6.2, 2.1.3.15
reflection (mirror reflection) 2.1.2.1, 2.1.2.2, 2.1.2.3, 2.1.2.4, 2.1.2.5
reflection conditions 2.1.3.13
for plane groups 2.1.3.8
integral 2.1.3.13, 2.1.3.6
zonal 2.1.3.7
reflection point 2.1.3.16
resonant scattering 2.1.3.5, 2.1.3.5
reverse setting of R cell 2.1.3.2, 2.1.1.2, 2.1.3.6
rhombohedral axes, cell and coordinate system 2.1.1.2, 2.1.1.2, 2.1.1.1, 2.1.1.2, 2.1.3.6
rhombohedral Bravais lattice 2.1.1.1, 2.1.1.2
rhombohedral space groups 2.1.1.1, 2.1.3.2, 2.1.1.2, 2.1.3.6
diagrams for 2.1.3.6.6
rotoinversion 2.1.2.1
rotoinversion axis 2.1.2.1
S centring 2.1.1.1
Schoenflies space-group symbols 2.1.3.3
screw axis 2.1.3.13, 2.1.3.7, 2.1.3.7
screw rotation 2.1.2.1
serial reflection conditions 2.1.3.13, 2.1.3.7
settings
monoclinic 2.1.3.6.3, 2.1.3.15
orthorhombic 2.1.3.6.4
rhombohedral, obverse and reverse 2.1.3.2, 2.1.3.2, 2.1.1.2, 2.1.3.6
site symmetry 2.1.3.12
oriented symbols for 2.1.3.12
space-group determination 2.1.3.13
space groups
classification of 2.1.1.1
computer production of space-group tables 2.1.4
diagrams for 2.1.3.6
incorrect assignment of 2.1.3.13
one-dimensional (line groups) 2.1.3.16, 2.1.1.1
symbols, changes of 2.1.2, 2.1.3.4, 2.1.3.4
symmetry elements and operations of 2.1.2.1
symmorphic 2.1.3.5, 2.1.3.3
SPACER 2.1.4
special position 2.1.3.11, 2.1.3.11
special projections 2.1.3.14
special reflection conditions 2.1.3.13, 2.1.3.13
structural (non-space-group) absences 2.1.3.13
subgroups
conjugate 2.1.3.12
symbols
for Bravais types of lattice 2.1.1.1, 2.1.1.1
for centring types 2.1.1.2, 2.1.3.12
for crystal classes 2.1.1.1
for crystal families 2.1.1.1, 2.1.1.1
for line groups 2.1.3.16, 2.1.1.1
for plane groups, changes of 2.1.3.4
for site symmetries 2.1.3.12
for space groups 2.1.3.3, 2.1.3.3, 2.1.3.3, 2.1.3.4, 2.1.3.15
for space groups, changes of 2.1.3.4, 2.1.3.4
for symmetry elements 2.1.2
for symmetry elements and operations 2.1.2.1
Hermann–Mauguin plane-group symbols 2.1.3.2
Schoenflies space-group symbols 2.1.3.3
symmetry axes 2.1.2.5
symmetry directions 2.1.3.4, 2.1.3.1
symmetry element 2.1.2
diagrams of 2.1.3.6
projection of 2.1.3.14, 2.1.3.10
symmetry
of special projections 2.1.3.14
Patterson symmetry 2.1.3.5
symmetry operation 2.1.3.9, 2.1.3.10
defining symmetry operation 2.1.2.1
matrix representation of 2.1.3.9, 2.1.3.11
symbols for 2.1.2.1
symmorphic space groups 2.1.3.5, 2.1.3.3
systematic absences 2.1.3.13
tetragonal crystal system 2.1.1.1
tetragonal point groups 2.1.1.1, 2.1.1.1
tetragonal space groups
diagrams for 2.1.3.6.5
triclinic crystal system 2.1.1.1
triclinic space groups
diagrams for 2.1.3.6.2
trigonal crystal system 2.1.1.1, 2.1.1.1
trigonal point groups 2.1.1.1
trigonal space groups
diagrams for 2.1.3.6.5, 2.1.3.6.6
two-dimensional space groups 2.1.3.13
unique monoclinic axis 2.1.3.2, 2.1.3.6.3, 2.1.3.15, 2.1.3.11
Wyckoff letter 2.1.3.11
Wyckoff position 2.1.3.11, 2.1.3.11
zonal reflection conditions 2.1.3.7