International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by M. I. Aroyo

International Tables for Crystallography (2016). Vol. A, ch. 2.1, p. 164

Table 2.1.3.6 

Th. Hahna and A. Looijenga-Vosb

Table 2.1.3.6| top | pdf |
Integral reflection conditions for centred cells (lattices)

Reflection conditionCentring type of cellCentring symbol
None Primitive [\bigg\{] P
    R (rhombohedral axes)
[h + k = 2n] C-face centred   C
[k + l = 2n] A-face centred   A
[h + l = 2n] B-face centred   B
[h + k + l = 2n] Body centred   I
[h + k, h + l] and All-face centred   F
[k + l = 2n] or:      
[h, k, l] all odd or all even (`unmixed')      
[{-h + k + l = 3n}] Rhombohedrally centred, obverse setting (standard) [\!\!\left.{\matrix{{}\cr{}\cr{}\cr{}\cr{}\cr{}}}\right\}] R (hexagonal axes)
[h - k + l = 3n] Rhombohedrally centred, reverse setting  
[h - k = 3n] Hexagonally centred   H
For further explanations see Section 2.1.1[link] and Table 2.1.1.2[link].
For the use of the unconventional H cell, see Section 1.5.4[link] and Table 2.1.1.2[link].