P2 C21 2 Monoclinic No. 3 P121 Patterson symmetry P12/m1 UNIQUE AXIS b

Origin on 2

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2

Symmetry operations

 (1)  1 (2)  2   0, y, 0

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
General:
 2 e 1
 (1) x, y, z (2) -x, y, -z
no conditions
Special: as above, plus
 1 d 2
 1/2, y, 1/2
no extra conditions
 1 c 2
 1/2, y, 0
no extra conditions
 1 b 2
 0, y, 1/2
no extra conditions
 1 a 2
 0, y, 0
no extra conditions

Symmetry of special projections

 Along [001]   p1m1a' = ap   b' = b   Origin at 0, 0, z Along [100]   p11ma' = b   b' = cp   Origin at x, 0, 0 Along [010]   p2a' = c   b' = a   Origin at 0, y, 0

 P2 C21 2 Monoclinic No. 3 P112 Patterson symmetry P112/m UNIQUE AXIS c

Origin on 2

 Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1

Symmetry operations

 (1)  1 (2)  2   0, 0, z

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
General:
 2 e 1
 (1) x, y, z (2) -x, -y, z
no conditions
Special: as above, plus
 1 d 2
 1/2, 1/2, z
no extra conditions
 1 c 2
 0, 1/2, z
no extra conditions
 1 b 2
 1/2, 0, z
no extra conditions
 1 a 2
 0, 0, z
no extra conditions

Symmetry of special projections

 Along [001]   p2a' = a   b' = b   Origin at 0, 0, z Along [100]   p1m1a' = bp   b' = c   Origin at x, 0, 0 Along [010]   p11ma' = c   b' = ap   Origin at 0, y, 0