Pc Cs2 m Monoclinic No. 7 P1c1 Patterson symmetry P12/m1 UNIQUE AXIS b, CELL CHOICE 1

Origin on glide plane c

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry operations

 (1)  1 (2)  c   x, 0, z

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
General:
 2 a 1
 (1) x, y, z (2) x, -y, z + 1/2
h0l:
l = 2n

00l:
l = 2n

Symmetry of special projections

 Along [001]   p11ma' = ap   b' = b   Origin at 0, 0, z Along [100]   p1g1a' = b   b' = cp   Origin at x, 0, 0 Along [010]   p1a' = 1/2c   b' = a   Origin at 0, y, 0

UNIQUE AXIS b, DIFFERENT CELL CHOICES

P1c1

UNIQUE AXIS b, CELL CHOICE 1

Origin on glide plane c

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
General:
 2 a 1
 (1) x, y, z (2) x, -y, z + 1/2
h0l:
l = 2n

00l:
l = 2n

P1n1

UNIQUE AXIS b, CELL CHOICE 2

Origin on glide plane n

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
General:
 2 a 1
 (1) x, y, z (2) x + 1/2, -y, z + 1/2
h0l:
h + l = 2n

h00:
h = 2n

00l:
l = 2n

P1a1

UNIQUE AXIS b, CELL CHOICE 3

Origin on glide plane a

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
General:
 2 a 1
 (1) x, y, z (2) x + 1/2, -y, z
h0l:
h = 2n

h00:
h = 2n

 Pc Cs2 m Monoclinic No. 7 P11a Patterson symmetry P112/m UNIQUE AXIS c, CELL CHOICE 1

Origin on glide plane a

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2

Symmetry operations

 (1)  1 (2)  a   x, y, 0

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
General:
 2 a 1
 (1) x, y, z (2) x + 1/2, y, -z
hk0: h = 2n
h00: h = 2n

Symmetry of special projections

 Along [001]   p1a' = 1/2a   b' = b   Origin at 0, 0, z Along [100]   p11ma' = bp   b' = c   Origin at x, 0, 0 Along [010]   p1g1a' = c   b' = ap   Origin at 0, y, 0

UNIQUE AXIS c, DIFFERENT CELL CHOICES

P11a

UNIQUE AXIS c, CELL CHOICE 1

Origin on glide plane a

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
General:
 2 a 1
 (1) x, y, z (2) x + 1/2, y, -z
hk0: h = 2n
h00: h = 2n

P11n

UNIQUE AXIS c, CELL CHOICE 2

Origin on glide plane n

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
General:
 2 a 1
 (1) x, y, z (2) x + 1/2, y + 1/2, -z
hk0: h + k = 2n
h00: h = 2n
0k0: k = 2n

P11b

UNIQUE AXIS c, CELL CHOICE 3

Origin on glide plane b

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
General:
 2 a 1
 (1) x, y, z (2) x, y + 1/2, -z
hk0: k = 2n
0k0: k = 2n