Cc Cs4 m Monoclinic No. 9 C1c1 Patterson symmetry C12/m1 UNIQUE AXIS b, CELL CHOICE 1

Origin on glide plane c

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry operations

For (0, 0, 0)+ set

 (1)  1 (2)  c   x, 0, z

For (1/21/2, 0)+ set

 (1)  t(1/2, 1/2, 0) (2)  n(1/2, 0, 1/2)   x, 1/4, z

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/21/2, 0); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
(0, 0, 0)+  (1/21/2, 0)+  General:
 4 a 1
 (1) x, y, z (2) x, -y, z + 1/2
hkl: h + k = 2n
h0l: hl = 2n
0kl: k = 2n
hk0: h + k = 2n
0k0: k = 2n
h00: h = 2n
00l: l = 2n

Symmetry of special projections

 Along [001]   c11ma' = ap   b' = b   Origin at 0, 0, z Along [100]   p1g1a' = 1/2b   b' = cp   Origin at x, 0, 0 Along [010]   p1a' = 1/2c   b' = 1/2a   Origin at 0, y, 0

UNIQUE AXIS b, DIFFERENT CELL CHOICES

C1c1

UNIQUE AXIS b, CELL CHOICE 1

Origin on glide plane c

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/21/2, 0); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
(0, 0, 0)+  (1/21/2, 0)+  General:
 4 a 1
 (1) x, y, z (2) x, -y, z + 1/2
hkl: h + k = 2n
h0l: hl = 2n
0kl: k = 2n
hk0: h + k = 2n
0k0: k = 2n
h00: h = 2n
00l: l = 2n

A1n1

UNIQUE AXIS b, CELL CHOICE 2

Origin on glide plane n

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/21/2); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
(0, 0, 0)+  (0, 1/21/2)+  General:
 4 a 1
 (1) x, y, z (2) x + 1/2, -y, z + 1/2
hkl: k + l = 2n
h0l: hl = 2n
0kl: k + l = 2n
hk0: k = 2n
0k0: k = 2n
h00: h = 2n
00l: l = 2n

I1a1

UNIQUE AXIS b, CELL CHOICE 3

Origin on glide plane a

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/21/21/2); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
(0, 0, 0)+  (1/21/21/2)+  General:
 4 a 1
 (1) x, y, z (2) x + 1/2, -y, z
hkl: h + k + l = 2n
h0l: hl = 2n
0kl: k + l = 2n
hk0: h + k = 2n
0k0: k = 2n
h00: h = 2n
00l: l = 2n

 Cc Cs4 m Monoclinic No. 9 A11a Patterson symmetry A112/m UNIQUE AXIS c, CELL CHOICE 1

Origin on glide plane a

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Symmetry operations

For (0,  0,  0)+ set

 (1)  1 (2)  a   x, y, 0

For (0, 1/21/2)+ set

 (1)  t(0, 1/2, 1/2) (2)  n(1/2, 1/2, 0)   x, y, 1/4

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/21/2); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
(0, 0, 0)+  (0, 1/21/2)+  General:
 4 a 1
 (1) x, y, z (2) x + 1/2, y, -z
hkl: k + l = 2n
hk0: hk = 2n
0kl: k + l = 2n
h0l: l = 2n
00l: l = 2n
h00: h = 2n
0k0: k = 2n

Symmetry of special projections

 Along [001]   p1a' = 1/2a   b' = 1/2b   Origin at 0, 0, z Along [100]   c11ma' = bp   b' = c   Origin at x, 0, 0 Along [010]   p1g1a' = 1/2c   b' = ap   Origin at 0, y, 0

UNIQUE AXIS c, DIFFERENT CELL CHOICES

A11a

UNIQUE AXIS c, CELL CHOICE 1

Origin on glide plane a

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/21/2); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
(0, 0, 0)+  (0, 1/21/2)+  General:
 4 a 1
 (1) x, y, z (2) x + 1/2, y, -z
hkl: k + l = 2n
hk0: hk = 2n
0kl: k + l = 2n
h0l: l = 2n
00l: l = 2n
h00: h = 2n
0k0: k = 2n

B11n

UNIQUE AXIS c, CELL CHOICE 2

Origin on glide plane n

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 0, 1/2); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
(0, 0, 0)+  (1/2, 0, 1/2)+  General:
 4 a 1
 (1) x, y, z (2) x + 1/2, y + 1/2, -z
hkl: h + l = 2n
hk0: hk = 2n
0kl: l = 2n
h0l: h + l = 2n
00l: l = 2n
h00: h = 2n
0k0: k = 2n

I11b

UNIQUE AXIS c, CELL CHOICE 3

Origin on glide plane b

 Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/21/21/2); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
(0, 0, 0)+  (1/21/21/2)+  General:
 4 a 1
 (1) x, y, z (2) x, y + 1/2, -z
hkl: h + k + l = 2n
hk0: hk = 2n
0kl: k + l = 2n
h0l: h + l = 2n
00l: l = 2n
h00: h = 2n
0k0: k = 2n