Origin at -1 on 1 21 1
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1 |
Symmetry operations
(1) 1 | (2) 2(0, 0, 1/2) 1/4, 0, z | (3) 2(0, 1/2, 0) 0, y, 0 | (4) 2(1/2, 0, 0) x, 1/4, 1/4 |
(5) -1 0, 0, 0 | (6) a x, y, 1/4 | (7) m x, 1/4, z | (8) n(0, 1/2, 1/2) 1/4, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||||||||
General: | |||||||||||||
|
| 0kl: k + l = 2n hk0: h = 2n h00: h = 2n 0k0: k = 2n 00l: l = 2n |
Special: as above, plus | |||||||||
|
| no extra conditions | |||||||
|
| hkl: h + l, k = 2n | |||||||
|
| hkl: h + l, k = 2n |
Symmetry of special projections
Along [001] p2gm a' = 1/2a b' = b Origin at 0, 0, z | Along [100] c2mm a' = b b' = c Origin at x, 1/4, 1/4 | Along [010] p2gg a' = c b' = a Origin at 0, y, 0 |