
Origin at 2 2 2 at 2 1 2
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2 |
(1) 1 | (2) 2 0, 0, z | (3) 4+ 0, 1/2, z | (4) 4- 1/2, 0, z |
(5) 2(0, 1/2, 0) 1/4, y, 0 | (6) 2(1/2, 0, 0) x, 1/4, 0 | (7) 2 x, x, 0 | (8) 2 x, -x, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) -y + 1/2, x + 1/2, z | (4) y + 1/2, -x + 1/2, z | (5) -x + 1/2, y + 1/2, -z | (6) x + 1/2, -y + 1/2, -z | (7) y, x, -z | (8) -y, -x, -z |
| h00: h = 2n
|
| | Special: as above, plus
|
| x, x, 1/2 | -x, -x, 1/2 | -x + 1/2, x + 1/2, 1/2 | x + 1/2, -x + 1/2, 1/2 |
| 0kl: k = 2n
|
| x, x, 0 | -x, -x, 0 | -x + 1/2, x + 1/2, 0 | x + 1/2, -x + 1/2, 0 |
| 0kl: k = 2n
|
| 0, 0, z | 1/2, 1/2, z | 1/2, 1/2, -z | 0, 0, -z |
| hkl: h + k = 2n
|
| | hk0: h + k = 2n
|
| | hkl: h + k = 2n
|
| | hkl: h + k = 2n
|
Symmetry of special projections
Along [001] p4gm a' = a b' = b Origin at 0, 1/2, z | Along [100] p2mg a' = b b' = c Origin at x, 1/4, 0 | Along [110] p2mm a' = 1/2(-a + b) b' = c Origin at x, x, 0 |