Asymmetric unit | 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1/4; x ≤ (1 + y)/2; y ≤ min(1 - x, (1 + x)/2) |
Vertices | 0, 0, 0 | 1/2, 0, 0 | 2/3, 1/3, 0 | 1/3, 2/3, 0 | 0, 1/2, 0 | 0, 0, 1/4 | 1/2, 0, 1/4 | 2/3, 1/3, 1/4 | 1/3, 2/3, 1/4 | 0, 1/2, 1/4 |
|
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -y, x - y, z | (3) -x + y, -x, z | (4) x, y, -z + 1/2 | (5) -y, x - y, -z + 1/2 | (6) -x + y, -x, -z + 1/2 | (7) -y, -x, z + 1/2 | (8) -x + y, y, z + 1/2 | (9) x, x - y, z + 1/2 | (10) -y, -x, -z | (11) -x + y, y, -z | (12) x, x - y, -z |
| h-h0l: l = 2n 000l: l = 2n
|
| | Special: as above, plus
|
| x, y, 1/4 | -y, x - y, 1/4 | -x + y, -x, 1/4 | -y, -x, 3/4 | -x + y, y, 3/4 | x, x - y, 3/4 |
| no extra conditions |
| x, -x, 0 | x, 2x, 0 | (-2x), -x, 0 | x, -x, 1/2 | x, 2x, 1/2 | (-2x), -x, 1/2 |
| hkil: l = 2n
|
| 2/3, 1/3, z | 2/3, 1/3, -z + 1/2 | 2/3, 1/3, z + 1/2 | 2/3, 1/3, -z |
| hkil: l = 2n
|
| 1/3, 2/3, z | 1/3, 2/3, -z + 1/2 | 1/3, 2/3, z + 1/2 | 1/3, 2/3, -z |
| hkil: l = 2n
|
| 0, 0, z | 0, 0, -z + 1/2 | 0, 0, z + 1/2 | 0, 0, -z |
| hkil: l = 2n
|
| 2/3, 1/3, 1/4 | 2/3, 1/3, 3/4 |
| hkil: l = 2n
|
| 2/3, 1/3, 0 | 2/3, 1/3, 1/2 |
| hkil: l = 2n
|
| 1/3, 2/3, 1/4 | 1/3, 2/3, 3/4 |
| hkil: l = 2n
|
| 1/3, 2/3, 0 | 1/3, 2/3, 1/2 |
| hkil: l = 2n
|
| | hkil: l = 2n
|
| | hkil: l = 2n
|