F-43c Td5 -43m Cubic info
No. 219 F-43c Patterson symmetry Fm-3m

symmetry group diagram

Origin at 2 3

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; -1/4 ≤ z ≤ 1/4; y ≤ min(x1/2 - x); -yzy
Vertices
0, 0, 0  1/2, 0, 0  1/41/41/4  1/41/4, -1/4  

Symmetry operations

For (0, 0, 0)+ set

(1)  1   (2)  2   0, 0, z(3)  2   0, y, 0(4)  2   x, 0, 0
(5)  3+   xxx(6)  3+   -xx-x(7)  3+   x-x-x(8)  3+   -x-xx
(9)  3-   xxx(10)  3-   x-x-x(11)  3-   -x-xx(12)  3-   -xx-x
(13)  n(1/21/21/2)   xxz(14)  c   x + 1/2-xz(15)  -4+   1/2, 0, z; 1/2, 0, 1/4(16)  -4-   0, 1/2z; 0, 1/21/4
(17)  n(1/21/21/2)   xyy(18)  -4+   x1/2, 0; 1/41/2, 0(19)  -4-   x, 0, 1/2; 1/4, 0, 1/2(20)  a   xy + 1/2-y
(21)  n(1/21/21/2)   xyx(22)  -4-   1/2y, 0; 1/21/4, 0(23)  b   -x + 1/2yx(24)  -4+   0, y1/2; 0, 1/41/2

For (0, 1/21/2)+ set

(1)  t(0, 1/21/2)   (2)  2(0, 0, 1/2)   0, 1/4z(3)  2(0, 1/2, 0)   0, y1/4(4)  2   x1/41/4
(5)  3+(1/31/31/3)   x - 1/3x - 1/6x(6)  3+   -xx + 1/2-x(7)  3+(-1/31/31/3)   x + 1/3-x - 1/6-x(8)  3+   -x-x + 1/2x
(9)  3-(1/31/31/3)   x - 1/6x + 1/6x(10)  3-(-1/31/31/3)   x + 1/6-x + 1/6-x(11)  3-   -x + 1/2-x + 1/2x(12)  3-   -x - 1/2x + 1/2-x
(13)  g(1/41/4, 0)   x + 1/4xz(14)  g(1/4, -1/4, 0)   x + 1/4-xz(15)  -4+   1/4, -1/4z; 1/4, -1/4, 0(16)  -4-   1/41/4z; 1/41/4, 0
(17)  a   xyy(18)  -4+   x, 0, 0; 1/4, 0, 0(19)  -4-   x, 0, 0; 1/4, 0, 0(20)  a   xy-y
(21)  g(1/4, 0, 1/4)   x + 1/4yx(22)  -4-   1/4y, -1/4; 1/4, 0, -1/4(23)  g(1/4, 0, -1/4)   -x + 1/4yx(24)  -4+   1/4y1/4; 1/4, 0, 1/4

For (1/2, 0, 1/2)+ set

(1)  t(1/2, 0, 1/2)   (2)  2(0, 0, 1/2)   1/4, 0, z(3)  2   1/4y1/4(4)  2(1/2, 0, 0)   x, 0, 1/4
(5)  3+(1/31/31/3)   x + 1/6x - 1/6x(6)  3+(1/3, -1/31/3)   -x + 1/6x + 1/6-x(7)  3+   x + 1/2-x - 1/2-x(8)  3+   -x + 1/2-x + 1/2x
(9)  3-(1/31/31/3)   x - 1/6x - 1/3x(10)  3-   x + 1/2-x-x(11)  3-   -x + 1/2-xx(12)  3-(1/3, -1/31/3)   -x - 1/6x + 1/3-x
(13)  g(1/41/4, 0)   x - 1/4xz(14)  g(-1/41/4, 0)   x + 1/4-xz(15)  -4+   1/41/4z; 1/41/4, 0(16)  -4-   -1/41/4z; -1/41/4, 0
(17)  g(0, 1/41/4)   xy + 1/4y(18)  -4+   x1/4, -1/4; 0, 1/4, -1/4(19)  -4-   x1/41/4; 0, 1/41/4(20)  g(0, 1/4, -1/4)   xy + 1/4-y
(21)  b   xyx(22)  -4-   0, y, 0; 0, 1/4, 0(23)  b   -xyx(24)  -4+   0, y, 0; 0, 1/4, 0

For (1/21/2, 0)+ set

(1)  t(1/21/2, 0)   (2)  2   1/41/4z(3)  2(0, 1/2, 0)   1/4y, 0(4)  2(1/2, 0, 0)   x1/4, 0
(5)  3+(1/31/31/3)   x + 1/6x + 1/3x(6)  3+   -x + 1/2x-x(7)  3+   x + 1/2-x-x(8)  3+(1/31/3, -1/3)   -x + 1/6-x + 1/3x
(9)  3-(1/31/31/3)   x + 1/3x + 1/6x(10)  3-   x-x + 1/2-x(11)  3-(1/31/3, -1/3)   -x + 1/3-x + 1/6x(12)  3-   -xx + 1/2-x
(13)  c   xxz(14)  c   x-xz(15)  -4+   0, 0, z; 0, 0, 1/4(16)  -4-   0, 0, z; 0, 0, 1/4
(17)  g(0, 1/41/4)   xy - 1/4y(18)  -4+   x1/41/4; 0, 1/41/4(19)  -4-   x, -1/41/4; 0, -1/41/4(20)  g(0, -1/41/4)   xy + 1/4-y
(21)  g(1/4, 0, 1/4)   x - 1/4yx(22)  -4-   1/4y1/4; 1/4, 0, 1/4(23)  g(-1/4, 0, 1/4)   -x + 1/4yx(24)  -4+   -1/4y1/4; -1/4, 0, 1/4

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/21/2); t(1/2, 0, 1/2); (2); (3); (5); (13)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 (0, 0, 0)+  (0, 1/21/2)+  (1/2, 0, 1/2)+  (1/21/2, 0)+  h, k, l permutable
General:
96 h 1
(1) xyz(2) -x-yz(3) -xy-z(4) x-y-z
(5) zxy(6) z-x-y(7) -z-xy(8) -zx-y
(9) yzx(10) -yz-x(11) y-z-x(12) -y-zx
(13) y + 1/2x + 1/2z + 1/2(14) -y + 1/2-x + 1/2z + 1/2(15) y + 1/2-x + 1/2-z + 1/2(16) -y + 1/2x + 1/2-z + 1/2
(17) x + 1/2z + 1/2y + 1/2(18) -x + 1/2z + 1/2-y + 1/2(19) -x + 1/2-z + 1/2y + 1/2(20) x + 1/2-z + 1/2-y + 1/2
(21) z + 1/2y + 1/2x + 1/2(22) z + 1/2-y + 1/2-x + 1/2(23) -z + 1/2y + 1/2-x + 1/2(24) -z + 1/2-y + 1/2x + 1/2
hkl: h + k = 2n
and h + lk + l = 2n
0kl: kl = 2n
hhl: hl = 2n
h00: h = 2n
    Special: as above, plus
48 g  2 . . 
x1/41/4 -x3/41/4 1/4x1/4 1/4-x3/4 1/41/4x 3/41/4-x
3/4x + 1/23/4 1/4-x + 1/23/4x + 1/23/43/4 -x + 1/23/41/4 3/43/4x + 1/2 3/41/4-x + 1/2
hkl: h  =  2n
48 f  2 . . 
x, 0, 0 -x, 0, 0 0, x, 0 0, -x, 0 0, 0, x 0, 0, -x
1/2x + 1/21/2 1/2-x + 1/21/2x + 1/21/21/2 -x + 1/21/21/2 1/21/2x + 1/2 1/21/2-x + 1/2
hkl: h  =  2n
32 e  . 3 . 
xxx -x-xx -xx-xx-x-x
x + 1/2x + 1/2x + 1/2 -x + 1/2-x + 1/2x + 1/2x + 1/2-x + 1/2-x + 1/2 -x + 1/2x + 1/2-x + 1/2
hkl: h  =  2n
24 d  -4 . . 
1/4, 0, 0 3/4, 0, 0 0, 1/4, 0 0, 3/4, 0 0, 0, 1/4 0, 0, 3/4
hkl: h  =  2n
24 c  -4 . . 
0, 1/41/4 0, 3/41/4 1/4, 0, 1/4 1/4, 0, 3/4 1/41/4, 0 3/41/4, 0
hkl: h  =  2n
8 b  2 3 . 
1/41/41/4 3/43/43/4
hkl: h  =  2n
8 a  2 3 . 
0, 0, 0 1/21/21/2
hkl: h  =  2n

Symmetry of special projections

Along [001]   p4mm
a' = 1/2a   b' = 1/2b   
Origin at 0, 0, z
Along [111]   p31m
a' = 1/6(2a - b - c)   b' = 1/6(-a + 2b - c)   
Origin at xxx
Along [110]   p1m1
a' = 1/4(-a + b)   b' = 1/2c   
Origin at xx, 0








































to end of page
to top of page