International Tables for Crystallography (2016). Vol. A, ch. 3.2, pp. 720-776
doi: 10.1107/97809553602060000930 |
Chapter 3.2. Point groups and crystal classes
Chapter index
absolute configuration 3.2.4.5
absolute structure 3.2.4.5
abstract point groups 3.2.1.1
basic crystal form 3.2.1.2.2
basic point form 3.2.1.2.2
biaxial crystals 3.2.2.3
Bravais–Donnay–Harker principle 3.2.2.2
coordinates and coordinate triplets 3.2.1.4.2
coordinate system
choice of 3.2.4.3
crystallographic orbit 3.2.1.2.2
crystallographic point groups 3.2.1.2
Curie's principle 3.2.2.1.2
Curie groups 3.2.2.1.2
dipole moment 3.2.2.5
dissymmetry 3.2.2.1.3
edge symmetry 3.2.1.2.3
eigensymmetry (inherent symmetry)
of a point form 3.2.1.3
enantiomer 3.2.4.5
enantiomerism 3.2.2.1.3
enantiomorph 3.2.4.5
etch figures 3.2.2.3
face pole 3.2.1.2.1
ferroelectricity 3.2.2.5
Friedel's rule 3.2.1.1
general class 3.2.1.4.1
general face pole 3.2.1.4.2
general position 3.2.1.2.2
general system 3.2.1.4.1
generators of a group 3.2.1.2.3
geometric crystal class 3.2.1.1
Grenzform (limiting form) 3.2.1.2.2
Grundform (basic form) 3.2.1.2.2
hemihedry 3.2.1.1
hexagonal axes, cell and coordinate system 3.2.1.2.1
index of a supergroup 3.2.1.3
inherent symmetry (eigensymmetry)
of a point form 3.2.1.3
international point-group symbols 3.2.1.4
isomorphism classes of point groups 3.2.1.1
isotropic crystals 3.2.2.3
Kugelgruppe (sphere group) 3.2.1.6
lattice point groups 3.2.1.1
layer groups 3.2.4.4
matrices
for point-group symmetry operations 3.2.1.4.2
matrix representation of a symmetry operation 3.2.1.2.1
merohedry 3.2.1.1
minimal supergroups 3.2.1.3
molecular symmetry 3.2.4.2
monoclinic point groups 3.2.3.2
morphology 3.2.2.2
Neumann's principle 3.2.2.1.4
noncentrosymmetric crystal classes 3.2.2.2
oblique point groups 3.2.3.1
optical activity 3.2.2.4.2
optical isomers 3.2.2.1.3
optical properties 3.2.2.3
oriented face-symmetry symbol 3.2.1.3
orthorhombic point groups 3.2.3.2
physical properties and symmetry 3.2.2.1
piezoelectricity 3.2.2.6
point form 3.2.1.2.1, 3.2.1.2.2, 3.2.1.2.3, 3.2.1.2.4, 3.2.1.4.2, 3.2.3.1, 3.2.3.2, 3.2.1.3, 3.2.1.6, 3.2.3.3
limiting 3.2.3.1
abstract 3.2.1.1
cubic 3.2.1.6
definition of 3.2.1.1
determination from physical properties 3.2.2.1
generating point group 3.2.1.2.2
isomorphism classes of 3.2.1.1
lattice point groups 3.2.1.1
noncentrosymmetric 3.2.2.1
noncrystallographic 3.2.1.4
of a molecule 3.2.4.2
polar 3.2.2.1.4
point-group type 3.2.4.2
polar point groups 3.2.2.1.4
pyroelectricity 3.2.2.5
reciprocal lattice 3.2.1.2.3
rectangular point groups 3.2.3.1
refraction 3.2.2.4.1
rhombohedral axes, cell and coordinate system 3.2.1.2.1
rod groups 3.2.4.4
second-harmonic generation 3.2.2.4.3
Sohncke space groups 3.2.4.5
space groups
Sohncke space groups 3.2.4.5
special point 3.2.1.2.2
special position 3.2.1.2.2
sphere group 3.2.1.6
square point groups 3.2.3.1
subgroups
symbols
for symmetry elements 3.2.1.2.1
symmetry centre 3.2.1.2.1
symmetry
of special projections 3.2.1.2.1
symmetry of diffraction record 3.2.1.1
symmetry of physical properties 3.2.2.1
tensor properties 3.2.2.6
tetragonal point groups 3.2.3.2
triclinic point groups 3.2.3.2
trigonal point groups 3.2.3.2
truncation of a polyhedron 3.2.1.2.4
twinning
by merohedry 3.2.2.3
uniaxial crystals 3.2.2.3