International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by M. I. Aroyo

International Tables for Crystallography (2016). Vol. A, ch. 3.4, pp. 792-825
https://doi.org/10.1107/97809553602060000932

Chapter 3.4. Lattice complexes

W. Fischera and E. Kocha*

aInstitut für Mineralogie, Petrologie und Kristallographie, Philipps-Universität, D-35032 Marburg, Germany
Correspondence e-mail:  kochelke@mailer.uni-marburg.de

In Section 3.4.1, the concept of lattice complexes and limiting complexes is introduced and compared with the concept of orbit types and non-characteristic orbits. To this end it is necessary to differentiate strictly between the two terms `point configuration' and `crystallographic orbit', both of which have often been used with two slightly different meanings: (1) for sets of points that are equivalent with respect to a given space group, i.e. in the mathematical sense of `orbit'; (2) for such sets of points, but detached from their generating space groups. A `lattice complex' is defined as a set of point configurations that may be generated within one type of Wyckoff set. Furthermore, the following items are introduced and illustrated by examples: Wyckoff position, Wyckoff set, type of Wyckoff set, limiting complex, comprehensive complex, Weissenberg complex, degrees of freedom of a lattice complex, and reference symbols of the lattice complexes. In Section 3.4.2, the concept of characteristic and non-characteristic orbits is introduced and compared with the concept of lattice complexes and limiting complexes. In Section 3.4.3, the descriptive symbols of lattice complexes are introduced, their properties are described and their interpretation is demonstrated by numerous examples. Tables 3.4.3.2 and 3.4.3.3 give the explicit assignment of the Wyckoff positions of all plane groups and space groups, respectively, to Wyckoff sets and to lattice complexes. For each Wyckoff position, the reference symbol of the corresponding lattice complex is tabulated. In addition, a descriptive symbol is given that describes the arrangement of points in the corresponding point configurations. It refers directly to the coordinate description of the Wyckoff position. Section 3.4.4 gives a short introduction to some applications of lattice complexes: (i) The knowledge of the assignment of the Wyckoff positions to lattice complexes considerably facilitates the study of geometrical properties of point configurations. (ii) Relations between crystal structures with different symmetries are often discernible because the corresponding Wyckoff positions either belong to the same lattice complex or because a limiting-complex relationship exists. (iii) Wyckoff positions belonging to the same lattice complex show analogous reflection conditions. (iv) If a phase transition of a crystal is connected with a group–subgroup transition, comparison of the lattice complexes corresponding to the Wyckoff positions of the original space group on the one hand and of its various subgroups on the other hand very often shows which of these subgroups are suitable for the low-symmetry modification. (v) Many incorrect space-group assignments to crystal structures could be avoided by simply looking at the lattice complexes (and their descriptive symbols) that correspond to the Wyckoff positions occupied by the different kinds of atoms.

3.4.1. The concept of lattice complexes and limiting complexes

| top | pdf |

3.4.1.1. Introduction

| top | pdf |

The term lattice complex (Gitterkomplex) was originally coined by P. Niggli (1919[link]), but he used the term in an ambiguous manner. Later, Hermann (1935[link]) modified and specified the concept of lattice complexes. The rigorous definition used in this chapter was proposed later still by Fischer & Koch (1974a[link]) [cf. also Koch & Fischer (1978a[link])]. An alternative definition was given by Zimmermann & Burzlaff (1974[link]) at around the same time.

In crystal structures belonging to different structure types and showing different space-group symmetries, some of the atoms may have the same relative locations (e.g. Cl in CsCl and F in CaF2). The concept of lattice complexes can be used to reveal relationships between such crystal structures even if their space groups belong to different types.

The terms `point configuration' (Fischer & Koch, 1974a[link]) and `crystallographic orbit' (Matsumoto & Wondratschek, 1979[link]) have frequently been used as synonyms for sets of points in three-dimensional space [{\bb E}^3] that are equivalent with respect to a space group [\cal G]. Such sets of points may be classified in two different ways: (1) according to the concept of lattice complexes (German: Gitterkomplexe) and of limiting complexes, which goes back to Hermann (1935[link]) and has been defined more strictly by Fischer & Koch (1974a[link]); (2) according to the concept of types of crystallographic orbits and of non-characteristic orbits introduced by Wondratschek (1976[link]). As the two approaches1 are strongly related but not identical, the classes originating from the two concepts will be compared and the differences worked out.

Both terms, `point configuration' and `crystallographic orbit', have been used with two slightly different meanings: (1) for sets of points that are equivalent with respect to a given space group, i.e. in the mathematical sense of `orbit'; (2) for such sets of points, but detached from their generating space groups. The second meaning is referred to, for example, if one speaks only of a primitive cubic point lattice. As within both concepts both meanings are required, one has to distinguish between them. In the following, therefore, the term `crystallographic orbit' is restricted to the first meaning and the term `point configuration' is restricted to the second meaning.

3.4.1.2. Crystallographic orbits, Wyckoff positions, Wyckoff sets and types of Wyckoff set

| top | pdf |

In mathematics, an orbit is a very general group-theoretical term describing any set of objects that are mapped onto each other by the action of a group (cf. Section 1.1.7[link] ). In fact, orbits are always present in crystallography where equivalence classes are defined by means of a group action (e.g. a space-group type is the orbit of a space group in the set of all space groups under the action of the affine group). In the present context, however, the term (crystallographic) orbit will be used in a much more restricted sense, as proposed by Wondratschek (1976[link]):

From any point of [{\bb E}^3], the symmetry operations of a given space group [\cal G] generate an infinite set of symmetry-equivalent points, called a crystallographic orbit with respect to [\cal G] or, for short, a crystallographic orbit (cf. Section 1.4.4[link] ). The space group [\cal G] is called the generating space group of the orbit.

Each point of a crystallographic orbit defines uniquely a largest finite subgroup of [\cal G], which maps that point onto itself, its site-symmetry group (cf. Section 1.4.4[link] ). Site-symmetry groups that belong to different points out of the same crystallographic orbit are conjugate subgroups of [\cal G].

Example

The points [x,0,0] and [-x+\textstyle{1\over 2},0,\textstyle{1\over 2}]; [-x,0,0] and [x+\textstyle{1\over 2},0,\textstyle{1\over 2}] form an orbit of a given space group Pmna together with the infinitely many other points that can be generated from the first four by the translations of Pmna. The site-symmetry group 2.. of each such point consists of the identity operation 1 and of a twofold rotation. The position of the twofold axis can easily be read from the corresponding coordinate triplet. The site-symmetry groups of the first two points are [\{1\semi 2\ x,0,0\}] and [\{1\semi 2\ x,0,\textstyle{1\over 2}\}], respectively. They can be mapped onto another by conjugation e.g. with the glide reflection [a\ x,y,\textstyle{1\over 4}] of Pmna. This glide reflection also interchanges the two twofold axes as can easily be learned by inspecting the space-group diagram.

The crystallographic orbits of a given space group [\cal G] subdivide the set of all points of [{\bb E}^3] into equivalence classes. It is also possible, however, to define equivalence of orbits on the set of all crystallographic orbits of [\cal G]:

Two crystallographic orbits of a space group [\cal G] belong to the same Wyckoff position (cf. Section 1.4.4[link] ) if and only if the site-symmetry groups of any two points stemming from the first and the second orbit are conjugate subgroups of [\cal G].2

Example

The points [0.2, 0, 0] and [0.1, 0, 0.5] belong to different orbits of a given space group Pmna. Their site-symmetry groups [\{1\semi 2\ x,0,0\}] and [\{1\semi 2\ x,0,\textstyle{1\over 2}\}] are conjugate subgroups of Pmna (cf. the previous example[link]). Therefore, the two orbits belong to the same Wyckoff position of Pmna, namely to 4e.

The following definition results in a coarser classification of crystallographic orbits:

Two crystallographic orbits of a space group [\cal G] belong to the same Wyckoff set (German: Konfigurationslage, cf. Fischer & Koch, 1974a[link]) if and only if the site-symmetry groups of any two points stemming from the first and the second orbit are conjugate subgroups of the affine normalizer of [\cal G] (cf. Section 1.4.4.3[link] ).3

Accordingly, all orbits of a certain Wyckoff position belong to the same Wyckoff set. The assignment of orbits to Wyckoff sets, therefore, also defines an equivalence relation on the Wyckoff positions of a space group. The Wyckoff sets of the space groups were first tabulated by Koch & Fischer (1975[link]).

Example

In space group Pmna, the site-symmetry groups of the points [0.2, 0, 0] and [0.2 ,0.5, 0] are [\{1\semi 2\ x,0,0\}] and [\{1\semi 2\ x,\textstyle{1\over 2},0\}]. There is no symmetry operation from Pmna that maps these site-symmetry groups onto another by conjugation and hence the two corresponding orbits do not belong to the same Wyckoff position of Pmna. The Euclidian (and affine) normalizer of Pmna is a space group of type Pmmm with half the lattice parameters compared with those of Pmna (cf. Chapter 3.5[link] ). It contains e.g. the twofold rotation [2\ x,\textstyle{1\over 4},0] that maps by conjugation the two site-symmetry groups onto another and also the two axes in the space-group diagram. Therefore, the two orbits belong to the same Wyckoff set even though they belong to the different Wyckoff positions 4e and 4f.

In analogy to the transition from a single space group to its type, it seems desirable to transfer also the terms `Wyckoff position' and `Wyckoff set' to the whole space-group type. For Wyckoff positions, however, such a generalization is not possible: two space groups of the same type can be mapped onto each other by infinitely many isomorphisms or affine mappings. Each isomorphism results in a unique relation between the Wyckoff positions of the two groups, but different isomorphisms may give rise to different relations so that the Wyckoff positions of the same Wyckoff set change their roles.

Such ambiguities, however, cannot occur for Wyckoff sets, because all Wyckoff sets of a certain space group differ in their group-theoretical relations to that group. Therefore, Wyckoff sets may be classified as follows:

Two Wyckoff sets stemming from space groups of the same type belong to the same type of Wyckoff set if and only if they are related by an isomorphism (affine mapping) of the two space groups (German: Klasse von Konfigurationslagen, cf. Fischer & Koch, 1974a[link]; Koch & Fischer, 1975[link]). The 219 types of space group in [{\bb E}^3] give rise to 1128 types of Wyckoff set.

Example

Take, in a particular space group of type [P4/mmm], the Wyckoff position 4l [x,0,0]. The points of each corresponding orbit form squares that replace the points of the tetragonal primitive point lattice of Wyckoff position 1a. For all conceivable orbits of 4l, the squares have the same orientation, but their edges differ in their lengths. Congruent arrangements of squares but shifted by [{1 \over 2}{\bf c}] or by [{1 \over 2}{\bf (a + b)}] or by [{1 \over 2}{\bf (a + b + c)}] give the orbits of the Wyckoff positions 4m, 4n and 4o, respectively, in the same space group. The four Wyckoff positions 4l to 4o, all with site symmetry m2m., make up a Wyckoff set (cf. Table 3.4.3.3[link]). They are mapped onto each other, for example, by the translations [\textstyle{1 \over 2}{\bf c}], [\textstyle{1 \over 2}{\bf (a + b)}] and [\textstyle{1 \over 2}{\bf (a + b + c)}], which belong to the Euclidean (and affine) normalizer of the group. If one space group of type [P4/mmm] is mapped onto another space group of the same type, the Wyckoff set 4l to 4o as a whole is transformed to 4l to 4o. The individual Wyckoff positions may be interchanged, however, because of the different possible choices for the origin in each individual space group of type [P4/mmm]. All the Wyckoff sets 4l to 4o stemming from all different space groups of type [P4/mmm] constitute together a type of Wyckoff set.

3.4.1.3. Point configurations and lattice complexes, reference symbols

| top | pdf |

For the comparison of crystal structures belonging to different types, another kind of equivalence relationship between crystallographic orbits may be useful:

One may consider the set of points belonging to a certain orbit without paying attention to the generating space group of the orbit. Such a bare set of points is called a point configuration. Two crystallographic orbits are called configuration equivalent if their point configurations are identical.

This definition uniquely assigns orbits to point configurations, but not vice versa.

Example

Let us consider a certain space group of type [Pm\bar 3 m] with lattice vectors a, b, c together with two of its non-maximal subgroups, namely [Fm\bar3] with index 4 and P432 with index 16, both with lattice vectors 2a, 2b, 2c. The orbit of [\textstyle{1 \over 2},\textstyle{1 \over 2},\textstyle{1 \over 2}] belongs to Wyckoff position 1b of [Pm\bar 3 m] (site symmetry [m\bar 3 m]), and the corresponding set of points, its point configuration, forms a primitive cubic point lattice. As both subgroups have doubled unit-cell edges, the point [\textstyle{1 \over 2},\textstyle{1 \over 2},\textstyle{1 \over 2}] turns to [\textstyle{1 \over 4},\textstyle{1 \over 4},\textstyle{1 \over 4}]. The respective orbits belong to Wyckoff position 8c of [Fm\bar 3] (site symmetry 23.) and to 8g of P432 (site symmetry .3.), and both correspond to the original point configuration. Therefore, the three orbits [Pm\bar 3 m] 1b [\textstyle{1 \over 2},\textstyle{1 \over 2},\textstyle{1 \over 2}], [Fm\bar3] 8c [\textstyle{1 \over 4},\textstyle{1 \over 4},\textstyle{1 \over 4}] and P432 8g [x,x,x] with [x=\textstyle{1 \over 4}] are configuration equivalent (together with several other orbits from certain other subgroups of [Pm\bar 3 m]). They all give rise to one and the same point configuration, a specific primitive cubic lattice of points. The generating space group, however, cannot be identified just by looking at the point configuration.

The eigensymmetry of a point configuration is the most comprehensive space group that maps this point configuration onto itself. Accordingly, exactly one crystallographic orbit out of each class of configuration-equivalent orbits stands out because its generating space group coincides with the eigensymmetry of its point configuration. In the case of the example above[link], this specific orbit is [Pm\bar 3 m] 1b (as long as the origin of [Pm\bar 3 m] remains unchanged).

The concept of configuration equivalence may also be applied to types of Wyckoff set: two types of Wyckoff set are configuration equivalent if and only if for each crystallographic orbit belonging to the first type there exists a configuration-equivalent crystallographic orbit belonging to the second type of Wyckoff set, and vice versa. All types of Wyckoff set differ in their crystallographic orbits, but configuration-equivalent types of Wyckoff set result in the same set of point configurations.

A lattice complex is the set of all point configurations that correspond to the crystallographic orbits of a certain type of Wyckoff set.

There exist 402 classes of configuration-equivalent types of Wyckoff set and, therefore, 402 lattice complexes in [{\bb E}^3].

Example

Let us consider again the type of Wyckoff set [P4/mmm] 4l to 4o (the last example[link] in Section 3.4.1.2[link]). The set of all corresponding point configurations constitutes a lattice complex. Its point configurations may be derived as described above, but now – instead of starting from just a particular group – starting from all space groups of type [P4/mmm] with all conceivable positions of the origins and lengths and orientations of the basis vectors. Accordingly, the point configurations may differ in their relative position in space, their orientation, and in the distances between the centres and the size of their squares.

Just as all crystal forms of a particular type may be related to different point-group types, the same lattice complex may occur in different space-group types.

Example

The lattice complex `cubic primitive lattice' may be generated, among others, in [Pm\bar{3}m\ 1a,b], in [Fm\bar{3}m\ 8c] and in [Ia\bar{3}\ 8a,b] with site symmetry [m\bar{3}m], [\bar{4}3m] and [.\bar{3}.], respectively. The type of Wyckoff set specified by [Pm\bar{3}m] 1a, b leads to the same set of point configurations as [Fm\bar{3}m\ 8c] or [Ia\bar{3}\ 8a,b]. Each point configuration of this lattice complex can be generated by a properly chosen space group of each of these space-group types.

Configuration-equivalent crystallographic orbits do not necessarily belong to configuration-equivalent types of Wyckoff set.

Example

The orbits of the types of Wyckoff set [Pm\bar{3}m\ 1a,b] and [Fm\bar{3}\ 8c] both refer to the set of all conceivable primitive cubic point lattices. Therefore, these two types of Wyckoff set are configuration equivalent and are associated with the same lattice complex. The type of Wyckoff set P432 8g [x,x,x], however, comprises apart from crystallographic orbits with [x = \textstyle{1\over 4}] also those with [x \ne \textstyle{1\over 4}]. The orbits with [x = \textstyle{1\over 4}] refer to the same set of point configurations as [Pm\bar{3}m\ 1a,b] and [Fm\bar{3}\ 8c], whereas those with [x \ne \textstyle{1\over 4}] give rise to point configurations with different properties. As a consequence, the type of Wyckoff set P432 8g [x,x,x] is not configuration equivalent with [Pm\bar{3}m\ 1a,b] and [Fm\bar{3}\ 8c], and, therefore, belongs to another lattice complex.

As this example shows, lattice complexes do not form equivalence classes of point configurations, but a certain point configuration may belong to several lattice complexes.

As each type of Wyckoff set uniquely refers to a certain lattice complex, one can also assign all corresponding Wyckoff sets, Wyckoff positions and crystallographic orbits to that lattice complex. A certain lattice complex, however, is frequently related to different types of Wyckoff set.

Among the different types of Wyckoff set belonging to a certain lattice complex, one stands out because its crystallographic orbits show the highest site symmetry. This one is called the characteristic type of Wyckoff set of that lattice complex, and the corresponding space-group type its characteristic space-group type. All other types of Wyckoff set are referred to as non-characteristic. The term `characteristic' may also be transferred to particular Wyckoff sets out of the characteristic type. The space groups of all the other types in which the lattice complex may be generated are subgroups of the space groups of its characteristic type.

Different lattice complexes may have the same characteristic space-group type, but then they differ in the oriented site symmetry of their Wyckoff positions within that space-group type.

The characteristic space-group type together with the oriented site symmetry expresses the common symmetry properties of all point configurations of a lattice complex and can be used for its identification. For the purpose of reference symbols of lattice complexes, however, instead of the site symmetry the Wyckoff letter of one of the Wyckoff positions with that site symmetry is arbitrarily chosen, as first done by Hermann (1935[link]). This Wyckoff position is called the characteristic Wyckoff position of the lattice complex.

Example

[Pm\bar{3}m] is the characteristic space-group type for the lattice complex of all cubic primitive point lattices. The Wyckoff positions with the highest possible site symmetry [m\bar{3}m] are la [0,0,0] and 1b [{\textstyle{1 \over 2} ,{1 \over 2}, {1 \over 2}}], from which 1a has been chosen as the characteristic position. Thus, the reference symbol of this lattice complex is [Pm\bar{3}m\ a].

Example

[Pm\bar{3}m] is also the characteristic space-group type for a second lattice complex that corresponds to Wyckoff position 8g .3m [x,x,x]. The reference symbol for this lattice complex is [Pm\bar{3}m\ g]. Each of its point configurations may be derived by replacing each point of a cubic primitive lattice by eight points arranged at the corners of a cube.

All types of Wyckoff set (together with their Wyckoff sets and Wyckoff positions) that generate, as described above, the same set of point configurations are assigned to the same lattice complex. Accordingly, the following criterion holds: two Wyckoff positions are assigned to the same lattice complex if there is a suitable transformation that maps the point configurations of the two Wyckoff positions onto each other and if their space groups belong to the same crystal family (cf. Section 1.3.4.4[link] ). Suitable transformations are translations, proper or improper rotations, isotropic or anisotropic expansions or more general affine mappings (without violation of the metric conditions for the corresponding crystal family), and all their products.

By this criterion, the Wyckoff positions of all space groups (1731 entries in the space-group tables, 1128 types of Wyckoff set) are uniquely assigned to 402 lattice complexes. This assignment was first done by Hermann in Internationale Tabellen zur Bestimmung von Kristallstrukturen (1935[link]). The corresponding information has also been given by Fischer et al. (1973[link]).

The same concept has been used for the point configurations and Wyckoff positions in the plane groups. Here the Wyckoff positions (72 entries in the plane-group tables, 51 types of Wyckoff set) are assigned to 30 plane lattice complexes or net complexes (cf. Burzlaff et al., 1968[link]). The complexes for the crystallographic subperiodic groups in three-dimensional space, i.e. for the crystallographic point groups, rod groups and layer groups, have been derived by Koch & Fischer (1978a[link]).

3.4.1.4. Limiting complexes and comprehensive complexes

| top | pdf |

As has been shown above, lattice complexes define equivalence classes of orbits but not of point configurations. This property gave rise to the concept of limiting complexes and comprehensive complexes (Fischer & Koch, 1974a[link]; Koch, 1974[link]).

For morphological crystal forms an almost analogous situation exists. A certain tetragonal prism, for example, may be a general representative of the crystal form `tetragonal prism' on the one hand or it may be a special representative of the crystal forms `tetragonal pyramid' or `tetragonal disphenoid' on the other hand. In the first case the generating point group may belong to the types 4/mmm, 422, 4/m or [\bar 4 2 m] (with site symmetry 2 for each face), in the second case the types of the generating point group are 4mm or 4 and [\bar 4 2 m] (site symmetry m) or [\bar 4], respectively. The crystal form `tetragonal prism' is a limiting form of both crystal forms `tetragonal pyramid' and `tetragonal disphenoid'.

If a first lattice complex forms a true subset of a second one, i.e. if each point configuration of the first lattice complex also belongs to the second one, then the first one is called a limiting complex of the second one and the second complex is called a comprehensive complex of the first one (cf. Koch & Fischer, 1985[link]).

Example

The cubic lattice complex [I\bar 43d] 16c [x,x,x] involves two limiting complexes, namely [Im\bar3m] 2a [0,0,0] and [Ia\bar3d] 16b [\textstyle{1\over 8},\textstyle{1\over 8},\textstyle{1\over 8}]. The orbits from [I\bar 43d] 16c with [x = 0] and from [Im\bar3m] 2a are configuration equivalent, and so are the orbits from [I\bar 43d] 16c with [x = \textstyle{1\over 8}] and from [Ia\bar3d] 16b.

Example

The tetragonal lattice complex [I4_1/amd] 4a is a comprehensive complex of the cubic complex [Fd\bar3m] 8a. Each orbit of [Fd\bar3m] 8a is configuration equivalent to a crystallographic orbit of a special space group of type [I4_1/amd] with axial ratio [c/a = (2)^{1/2}].

Furthermore, two lattice complexes without a limiting-complex relationship may have a non-empty intersection. Then the point configurations of the intersection result in one or, in very exceptional cases, in two or more other lattice complexes (cf. Koch, 1974[link]).

Example

The intersection of the two lattice complexes [Im\bar 3] 24g and [I\bar43m] 24g consists of all point configurations belonging to [Im\bar3m] 24h, i.e. each point configuration out of this intersection refers to an orbit from [Im\bar3m] 24h [0,x,x] and, in addition, to an orbit from [Im\bar 3] 24g [0,y,z] with [y = z] and to another one from [I\bar43m] 24g [x,x,z] with z = 0.

Example

The intersection of the trivariant lattice complexes [Fm\bar3c] 192j and P432 24k consists of two bivariant limiting complexes, namely of [Pm\bar3m] 24k [0,y,z] and of [Pm\bar3m] 24m [x,x,z].

Each point configuration of a given lattice complex is uniquely related to two space groups: (1) the space group that reflects its eigensymmetry, and (2) a space group that belongs to the characteristic space-group type of the lattice complex under consideration. In most cases the two groups coincide. Only when the point configuration under consideration belongs to a limiting complex is the first group a proper supergroup of the second one.

Complete lists of the limiting complexes of all lattice complexes are not available. Koch (1974[link]) derived the limiting complexes of the cubic lattice complexes. The limiting complexes that refer to specialized coordinate parameters may be derived from a table by Engel et al. (1984[link]), who listed the respective non-characteristic orbits for all space-group types. The limiting complexes of the tetragonal and trigonal lattice complexes that are due to metrical specializations are tabulated by Koch & Fischer (2003[link]) and by Koch & Sowa (2005[link]), respectively.

Fischer & Koch (1978[link]) tabulated the limiting complexes for the crystallographic point groups, rod groups and layer groups. As each type of plane group uniquely corresponds to a certain type of isomorphic layer group, information on the limiting complexes of the lattice complexes of the plane groups may easily be extracted from the respective table for the layer groups. This information may also be taken from a list of the non-characteristic orbits of the plane groups by Matsumoto & Wondratschek (1987[link]).

3.4.1.5. Additional properties of lattice complexes

| top | pdf |

3.4.1.5.1. The degrees of freedom

| top | pdf |

Each Wyckoff position shows a certain number of coordinate parameters that can be varied independently. For most lattice complexes, this number is the same for any of its Wyckoff positions. For the lattice complex with characteristic Wyckoff position [Pm\bar 3] 12j m.. [0,y,z], for instance, this number is two. The lattice complex has two degrees of freedom. If, however, the variation of a certain coordinate corresponds to a shift of the point configuration as a whole, the lattice complex has fewer degrees of freedom than the Wyckoff position that is being considered. Therefore, I41 8b [x,y,z] is the characteristic Wyckoff position of a lattice complex with only two degrees of freedom, although position 8b itself has three coordinate parameters that can be varied independently. The lattice complex P4/m j has two degrees of freedom and refers to Wyckoff positions with two as well as with three independent coordinate parameters, namely to P4/m 4j m.. [x,y,0] and to P4 4d 1 [x,y,z].

According to its number of degrees of freedom, a lattice complex is called invariant, univariant, bivariant or trivariant. In total, there exist 402 lattice complexes, 36 of which are invariant, 106 univariant, 105 bivariant and 155 trivariant. The 30 plane lattice complexes are made up of 7 invariant, 10 univariant and 13 bivariant ones.

Most of the invariant and univariant lattice complexes correspond to several types of Wyckoff set. In contrast to that, only one type of Wyckoff set can belong to each trivariant lattice complex. A bivariant lattice complex may either correspond to one type of Wyckoff set (e.g. [Pm\bar{3}\ j]) or to two types (P4 d, for example, belongs to the lattice complex with the characteristic Wyckoff position [P4/m\ j]).

3.4.1.5.2. Weissenberg complexes

| top | pdf |

Depending on their site-symmetry groups, two kinds of Wyckoff position may be distinguished:

  • (i) The site-symmetry group of any point is a proper subgroup of another site-symmetry group from the same space group. Then the Wyckoff position contains, among others, orbits where suitably chosen points may be infinitely close together.

    Example

    Each point configuration of the lattice complex with the characteristic Wyckoff position [P4/mmm\ 4j\ m.2m\ x,x,0] may be imagined as squares of four points surrounding the points of a tetragonal primitive lattice. For [x \rightarrow 0], the squares become infinitesimally small. Orbits with [x = 0] show site symmetry [4/mmm], their multiplicity is decreased from 4 to 1, and they belong to Wyckoff position [P4/mmm] 1a.

  • (ii) The site-symmetry group of every point belonging to the Wyckoff position under consideration is not a proper subgroup of any other site-symmetry group from the same space group.

    Example

    In Pmma, there does not exist a site-symmetry group that is a proper supergroup of mm2, the site symmetry of Wyckoff position [Pmma\ 2e\ \textstyle{1 \over 4},0,z]. As a consequence, the distance between any two symmetry-equivalent points belonging to Pmma e cannot become shorter than the minimum of [\textstyle{1 \over 2}a], b and c.

A lattice complex refers either to Wyckoff positions exclusively of the first or exclusively of the second kind. Most lattice complexes are related to Wyckoff positions of the first kind.

There exist, however, 67 lattice complexes without point configurations with infinitesimally short distances between symmetry-related points [cf. Hauptgitter (Weissenberg, 1925[link])]. These lattice complexes were called Weissenberg complexes by Fischer et al. (1973[link]). The 36 invariant lattice complexes are trivial examples of Weissenberg complexes. The other 31 Weissenberg complexes with degrees of freedom (24 univariant, 6 bivariant, 1 trivariant) are compiled in Table 3.4.1.1[link]. They have the following common property: each Weissenberg complex contains at least two invariant limiting complexes belonging to the same crystal family (see also Section 3.4.3.1.3[link]).

Example

The Weissenberg complex Pmma 2e [\textstyle{1\over 4},0,z] is a comprehensive complex of Pmmm a and of Cmmm a. Within the characteristic Wyckoff position, [{1 \over 4},0,0] refers to Pmmm a and [{1 \over 4},0,{1 \over 4}] to Cmmm a.

Table 3.4.1.1| top | pdf |
Reference symbols of the 31 Weissenberg complexes with f ≥ 1 degrees of freedom in [{\bb E}^3]

Weissenberg complexfWeissenberg complexf
P21/m e 2 [I\bar 42d\ d] 1
P2/c e 1 P4/nmm c 1
C2/c e 1 I41/acd e 1
P212121 a 3 P32 a 2
Pmma e 1 P3212 a 1
Pbcm d 2 P3221 a 1
Pmmn a 1 [P\bar 3m1\ d] 1
Pnma c 2 P61 a 2
Cmcm c 1 P6122 a 1
Cmme g 1 P6122 b 1
Imma e 1 P213 a 1
P43 a 2 I213 a 1
P4322 a 1 I213 b 1
P4322 c 1 [Ia\bar 3\ d] 1
P43212 a 1 [I\bar 43d\ c] 1
I4122 f 1    

Apart from the seven invariant plane lattice complexes, there exists only one further Weissenberg complex within the plane groups, namely the univariant rectangular complex p2mg c.

3.4.2. The concept of characteristic and non-characteristic orbits, comparison with the lattice-complex concept

| top | pdf |

3.4.2.1. Definitions

| top | pdf |

The generating space group of any crystallographic orbit may be compared with the eigensymmetry of its point configuration. If both groups coincide, the orbit is called a characteristic crystallographic orbit, otherwise it is named a non-characteristic crystallographic orbit (Wondratschek, 1976[link]; Engel et al., 1984[link]; see also Section 1.1.7[link] ). If the eigensymmetry group contains additional translations in comparison with those of the generating space group, the term extraordinary orbit is used (cf. also Matsumoto & Wondratschek, 1979[link]). Each class of configuration-equivalent orbits contains exactly one characteristic crystallographic orbit.

The set of all point configurations in [{\bb E}^3] can be divided into 402 equivalence classes by means of their eigensymmetry: two point configurations belong to the same symmetry type of point configuration if and only if their characteristic crystallographic orbits belong to the same type of Wyckoff set.

As each crystallographic orbit is uniquely related to a certain point configuration, each equivalence relation­ship on the set of all point configurations also implies an equivalence relationship on the set of all crystallo­graphic orbits: two crystallographic orbits are assigned to the same orbit type (cf. also Engel et al., 1984[link]) if and only if the corresponding point configurations belong to the same symmetry type.

In contrast to lattice complexes, neither symmetry types of point configuration nor orbit types can be used to define equivalence relations on Wyckoff positions, Wyckoff sets or types of Wyckoff set. Two crystallographic orbits coming from the same Wyckoff position belong to different orbit types, if – owing to special coordinate values – they differ in the eigensymmetry of their point configurations. Furthermore, two crystallographic orbits with the same coordinate description, but stemming from different space groups of the same type, may belong to different orbit types because of a specialization of the metrical parameters.

Example

The eigensymmetry of orbits from Wyckoff position [P\bar43m\ 4e\ x,x,x] with [x= \textstyle{1\over 4}] or [x= \textstyle{3\over 4}] is enhanced to [Fm\bar3m\ 4a, b] and hence they belong to a different orbit type to those with [x\ne \textstyle{1\over 4},\textstyle{3\over 4}].

Example

In general, an orbit belonging to the type of Wyckoff set I4/m 2a, b corresponds to a point configuration with eigensymmetry I4/mmm 2a, b. If, however, the space group I4/m has specialized metrical parameters, e.g. c/a = 1 or c/a = 21/2, then the eigensymmetry of the point configuration is enhanced to [Im\bar3m\ 2a] or [Fm\bar3m\ 4a,b], respectively.

3.4.2.2. Comparison of the concepts of lattice complexes and orbit types

| top | pdf |

It is the common intention of the lattice-complex and the orbit-type concepts to subdivide the point configurations and crystallographic orbits in [{\bb E}^3] into subsets with certain common properties. With only a few exceptions, the two concepts result in different subsets. As similar but not identical symmetry considerations are used, each lattice complex is uniquely related to a certain symmetry type of point configuration and to a certain orbit type, and vice versa. Therefore, the two concepts result in the same number of subsets: there exist 402 lattice complexes and 402 symmetry types of point configuration and orbit types. The differences between the subsets are caused by the different properties of the point configurations and crystallographic orbits used for the classifications (cf. also Koch & Fischer, 1985[link]).

The concept of orbit types is entirely based on the eigensymmetry of the particular point configurations: a crystallographic orbit is regarded as an isolated entity, i.e. detached from its Wyckoff position and its type of Wyckoff set. On the contrary, lattice complexes result from a hierarchy of classifications of crystallographic orbits into Wyckoff positions, Wyckoff sets, types of Wyckoff set and classes of configuration-equivalent types of Wyckoff set, i.e. a crystallographic orbit is always considered as being embedded in its type of Wyckoff set, and the eigensymmetry of a particular point configuration is disregarded. The differences between the two concepts become clear if limiting complexes are considered.

Forty-nine lattice complexes without any limiting complex exist (cf. Table 3.4.2.1[link]). They coincide completely with the corresponding symmetry types of point configurations. As can be extracted from the tables by Engel et al. (1984[link]) there exist 15 additional lattice complexes without limiting complexes due to specialized coordinates. For fundamental reasons, no cubic or hexagonal complexes allow any metrical specialization.

Example

The lattice complex [P\bar 1\ a] of all triclinic point lattices includes as limiting complexes the 13 other lattice complexes that refer to Bravais lattices. Hence the crystallographic orbits of [P\bar 1\ a] belong to 14 different orbit types.

Table 3.4.2.1| top | pdf |
Reference symbols of the 28 lattice complexes with f ≥ 1 degrees of freedom without any limiting complex

Lattice complexfLattice complexf
P4/mmm l 1 [Pm\bar 3n\ g] 1
P42/mmc j 1 [Pm\bar 3n\ j] 1
I4/mmm i 1 [Pn\bar 3m\ e] 1
P6222 g 1 [Pn\bar 3m\ i] 1
P6/mmm l 1 [Fm\bar 3m\ f] 1
P6/mmm p 2 [Fm\bar 3m\ h] 1
P4232 k 1 [Fd\bar 3m\ g] 2
I432 i 1 [Im\bar 3m\ e] 1
I4132 h 1 [Im\bar 3m\ f] 1
I4132 i 3 [Im\bar 3m\ g] 1
[Pm\bar 3m\ e] 1 [Im\bar 3m\ i] 1
[Pm\bar 3m\ i] 1 [Im\bar 3m\ j] 2
[Pm\bar 3m\ k] 2 [Im\bar 3m\ l] 3
[Pm\bar 3m\ m] 2 [Ia\bar 3d\ e] 1

Example

The lattice complex Fddd a of all orthorhombic diamond patterns includes as limiting complexes those of the tetragonal and the cubic diamond patterns I41/amd a and [Fd\bar 3m\ a], respectively. The orbits of Fddd a with specialized metric, therefore, belong to the orbit types I41/amd a or [Fd\bar 3m\ a].

353 lattice complexes comprise at least one limiting complex. Each of them includes additional point configurations in comparison to the corresponding symmetry type of point configuration (and orbit type), namely those belonging to the limiting complex.

Example

Lattice complex [Im\bar 3] 24g [0,y,z] comprises for y = z the limiting complex [Im\bar 3m] 24h, and for [y=z=\textstyle{1\over 4}] the limiting complex [Pm\bar 3m] 3c. The corresponding orbits with y = z and [y=z=\textstyle{1\over 4}] do not belong to orbit type [Im\bar 3] 24g.

Example

P4/mmm 8r [x,x,z] comprises for [z=\textstyle{1\over 4}] the limiting complex P4/mmm 4j, for [x=\textstyle{1\over 4}] the limiting complex P4/mmm 2g, for [x=z=\textstyle{1\over 4}] the limiting complex P4/mmm 1a, for a = c and x = z the limiting complex [Pm\bar 3 m] 8g, and for a = c and [x=z=\textstyle{1\over 4}] the limiting complex [Pm\bar 3 m] la. Again, none of the corresponding orbits belong to orbit type P4/mmm 8r.

The comparison of an orbit type with its corresponding lattice complex is more intricate. Again, the concept of limiting complexes and comprehensive complexes elucidates the interrelation.

Let A be a lattice complex with a limiting complex B and a comprehensive complex C. The respective orbit types will also be designated A, B and C (e.g. A = [Im\bar 3m] 24h [0,x,x]; B = [Pm\bar 3m] 3c, d [0,\textstyle{1\over 2},\textstyle{1\over 2}], [\textstyle{1\over 2},0,0]; C = [Im\bar 3] 24g [0,y,z]). Then a crystallographic orbit from a Wyckoff position of lattice complex A belongs to orbit type A only if it does not correspond to a point configuration of the limiting complex B (i.e. only the crystallographic orbits of [Im\bar 3m] 24h with [x\ne \textstyle{1\over 4}] belong to orbit type [Im\bar 3m] 24h). The crystallographic orbits of lattice complex A, however, that do correspond to the limiting complex B belong to orbit type B (i.e. all crystallographic orbits from [Im\bar 3m] 24h with [x= \textstyle{1\over 4}] belong to orbit type [Pm\bar 3m] 3c, d). On the contrary, those orbits that refer to lattice complex C and that happen to correspond to the limiting complex A of C belong to orbit type A instead of orbit type C. All crystallographic orbits of [Im\bar 3] 24g [0,y,z] with y = z or [y=z=\textstyle{1\over 4}] create point configurations of lattice complex [Im\bar 3] 24g but belong to orbit type [Im\bar 3m] 24h or [Pm\bar 3m] 3c, d, respectively.

For the comparison of lattice complexes and orbit types the concept of non-characteristic orbits is less helpful than the concept of limiting complexes. In terms of lattice complexes, there exist two basically different reasons for a crystallographic orbit to be non-characteristic:

  • (1) The crystallographic orbit under consideration belongs to a non-characteristic type of Wyckoff set of a lattice complex. Then this orbit, together with all other orbits from its type of Wyckoff set, is non-characteristic. A characteristic crystallographic orbit necessarily stems from a characteristic Wyckoff set of a lattice complex.

  • (2) The crystallographic orbit under consideration stands out with respect to the eigensymmetry of its point configuration compared with the other orbits out of its type of Wyckoff sets, i.e. it corresponds to a limiting complex. Then this orbit, together with all other orbits referring to that limiting complex, is non-characteristic.

As a consequence, three kinds of non-characteristic orbits may be distinguished:

  • (1) those that belong to a non-characteristic Wyckoff set, but do not correspond to a limiting complex, e.g. all orbits from [Pm\bar 3] 6e to h;

  • (2) those that belong to a characteristic Wyckoff set, but correspond to a limiting complex, e.g. [Pm\bar 3 m] 8g [x,x,x] with [x=\textstyle{1\over 4}] or P4/mmm 1a, b with a = c;

  • (3) those that belong to a non-characteristic Wyckoff set and, in addition, correspond to a limiting complex, e.g. [Pm\bar 3] 8i [x,x,x] with [x=\textstyle{1\over 4}].

As these considerations illustrate, limiting complexes and non-characteristic orbits do not coincide and a statement by Engel (1983[link]) proposing this correspondence, therefore, is not correct.

The concept of lattice complexes and limiting complexes on the one hand and of orbit types and non-characteristic orbits on the other hand are complementary in a certain sense: it is possible to derive all orbit types and all non-characteristic orbits from the complete knowledge of lattice complexes and limiting complexes and vice versa.

Engel et al. (1984[link]) enumerated for all space-group types those non-characteristic orbits that refer to special coordinates, but they excluded all further ones that are based on specialized metrical parameters of the generating space groups or on the simultaneous specialization of metrical and coordinate parameters. A computer program which enables the determination of non-characteristic orbits is now available (NONCHAR on the Bilbao Crystallographic Server at http://www.cryst.ehu.es ). Lawrenson & Wondratschek (1976[link]) listed the extraordinary orbits of the plane groups, and Matsumoto & Wondratschek (1987[link]) listed the non-characteristic orbits of the plane groups.

The special, but not exceptional, case in which a non-characteristic orbit is produced only if both the coordinates and metric are specialized deserves extra concern. The crystallographic orbits from [R\bar 3] 6f [x,y,z] with [x=\textstyle{1\over 4}, y=0, z=\textstyle{1\over 2}] or [x=\textstyle{1\over 4}, y=\textstyle{1\over 2}, z=0] and with the rhombohedral angle α = 90° may be used as an example. The eigensymmetry of the corresponding point configurations is [Pm\bar 3n] 6c, d (corresponding to the position of the Cr atoms in the crystal structure of Cr3Si). Accordingly, the lattice complex [R\bar 3] f comprises [Pm\bar 3n\ c] as limiting complex. [Pm\bar 3n\ c] shows special integral reflection conditions (hkl: h + k + l = 2n or h = 2n + 1, k = 4n, l = 4n + 2; h, k, l permutable), which of course hold for all orbits of that type, i.e. also for the special orbits from [R\bar 3] f described above. As geometrical structure factors are independent of metrical parameters, these reflection conditions are even valid for crystallographic orbits from [R\bar 3] f with [a\ne 90^\circ] if the coordinates are restricted to [\textstyle{1\over 4}, 0, \textstyle{1\over 2}] or to [\textstyle{1\over 4}, \textstyle{1\over 2}, 0].

In general, the following statement holds: if a lattice complex causes special reflection conditions then exactly these conditions are also valid for any crystallographic orbit that refers to a comprehensive complex of that lattice complex if, in addition, this crystallographic orbit may be described by the same coordinate triplets as an orbit of the lattice complex under consideration.

3.4.3. Descriptive lattice-complex symbols and the assignment of Wyckoff positions to lattice complexes

| top | pdf |

3.4.3.1. Descriptive symbols

| top | pdf |

3.4.3.1.1. Introduction

| top | pdf |

For the study of relations between crystal structures, lattice-complex symbols are desirable that show as many relations between point configurations as possible. To this end, Hermann (1960[link]) derived descriptive lattice-complex symbols that were further developed by Donnay et al. (1966[link]) and completed by Fischer et al. (1973[link]). These symbols describe the arrangements of the points in the point configurations and refer directly to the coordinate descriptions of the Wyckoff positions. Since a lattice complex, in general, contains Wyckoff positions with different coordinate descriptions, it may be represented by several different descriptive symbols. The symbols are further affected by the settings of the space group. The present section is restricted to the fundamental features of the descriptive symbols. Details have been described by Fischer et al. (1973[link]). Tables 3.4.3.2[link] and 3.4.3.3[link] give for each Wyckoff position of a plane group or a space group, respectively, the multiplicity, the Wyckoff letter, the oriented site symmetry, the reference symbol of the corresponding lattice complex and the descriptive symbol.4 The comparatively short descriptive symbols condense complicated verbal descriptions of the point configurations of lattice complexes.

3.4.3.1.2. Invariant lattice complexes

| top | pdf |

An invariant lattice complex in its characteristic Wyckoff position is represented by a capital letter (sometimes in combination with a superscript). The first column of Table 3.4.3.1[link] gives a complete list of these symbols in alphabetical order. The characteristic Wyckoff positions are shown in column 3. Lattice complexes from different crystal families but with the same coordinate description for their characteristic Wyckoff positions receive the same descriptive symbol. If necessary, the crystal family may be stated explicitly by a small letter (column 2) preceding the lattice-complex symbol: c cubic, t tetragonal, h hexagonal, o orthorhombic, m monoclinic, a anorthic (triclinic).

Example

D is the descriptive symbol of the invariant cubic lattice complex [Fd\bar{3}m] a as well as of the orthorhombic lattice complex Fddd a. The cubic lattice complex cD contains – among others – the point configurations corresponding to the arrangement of carbon atoms in diamond and of silicon atoms in β-cristobalite. The orthorhombic complex oD is a comprehensive complex of cD. It consists of all those point configurations that may be produced by orthorhombic deformations of the point configurations of cD.

Table 3.4.3.1| top | pdf |
Descriptive symbols of invariant lattice complexes in their characteristic Wyckoff position

Descriptive symbolCrystal familyCharacteristic Wyckoff position
C o Cmmm a
m [C2/m\ a]
D c [Fd\bar{3}m\ a]
o Fddd a
[^{v}D] t [I4_{1}/amd\ a]
E h [P6_{3}/mmc\ c]
F c [Fm\bar{3}m\ a]
o Fmmm a
G h [P6/mmm\ c]
I c [Im\bar{3}m\ a]
t [I4/mmm\ a]
o Immm a
J c [Pm\bar{3}m\ c]
[J^{*}] c [Im\bar{3}m\ b]
M h [R\bar{3}m\ e]
N h [P6/mmm\ f]
P c [Pm\bar{3}m\ a]
h [P6/mmm\ a]
t [P4/mmm\ a]
o Pmmm a
m [P2/m\ a]
a [P\bar{1}\ a]
[^{+}Q] h [P6_{2}22\ c]
R h [R\bar{3}m\ a]
S c [I\bar{4}3d\ a]
[S^{*}] c [Ia\bar{3}d\ d]
T c [Fd\bar{3}m\ c]
o Fddd c
[^{v}T] t [I4_{1}/amd\ c]
[^{+}V] c [I4_{1}32\ c]
[V^{*}] c [Ia\bar{3}d\ c]
W c [Pm\bar{3}n\ c]
[W^{*}] c [Im\bar{3}m\ d]
[^{+}Y] c [P4_{3}32\ a]
[^{+}Y^{*}] c [I4_{1}32\ a]
[Y^{**}] c [Ia\bar{3}d\ b]

The descriptive symbol of a non-characteristic Wyckoff position depends on the difference between the coordinate descriptions of the respective characteristic Wyckoff position and the position under consideration. Three cases may be distinguished, which may also occur in combinations.

  • (i) The two coordinate descriptions differ by an origin shift. Then, the respective shift vector is added as a prefix to the descriptive symbol of the characteristic Wyckoff position.

    Example

    The orthorhombic invariant lattice complex F is represented in its characteristic Wyckoff position Fmmm a by the coordinate triplets [0,0,0], [\textstyle{1 \over 2},\textstyle{1 \over 2},0], [0,\textstyle{1 \over 2},\textstyle{1 \over 2}] and [\textstyle{1 \over 2},0,\textstyle{1 \over 2}]. In Pnnn e (origin choice 1), it is described by [\textstyle{1 \over 4},\textstyle{1 \over 4},\textstyle{1 \over 4}], [\textstyle{3 \over 4},\textstyle{3 \over 4},\textstyle{1 \over 4}], [\textstyle{1 \over 4},\textstyle{3 \over 4},\textstyle{3 \over 4}] and [\textstyle{3 \over 4},\textstyle{1 \over 4},\textstyle{3 \over 4}] and, therefore, receives the descriptive symbol [\textstyle{1 \over 4}\textstyle{1 \over 4}\textstyle{1 \over 4}F].

  • (ii) The multiplicity of the Wyckoff position considered is higher than that of the corresponding characteristic position. Then, the coordinate description of this Wyckoff position can be transformed into that of the characteristic position by taking shorter basis vectors. Reduction of all three basis vectors by a factor of 2 is denoted by the subscript 2 on the descriptive symbol. Reduction of one or two basis vectors by a factor of 2 is denoted by one of the subscripts a, b or c or a combination of these. The subscript C means a factor of 3, cc a factor of 4 and Cc a factor of 6.

    Examples

    The characteristic Wyckoff position of the orthorhombic lattice complex P is Pmmm a with coordinate description [0,0,0]. This complex occurs also in Pmma a with coordinate triplets [0,0,0], [\textstyle{1 \over 2},0,0], and in Pcca a with [0,0,0], [0,0,\textstyle{1 \over 2}], [\textstyle{1 \over 2},0,0], [\textstyle{1 \over 2},0,\textstyle{1 \over 2}]. The corresponding descriptive symbols are [P_{a}] and [P_{ac}], respectively.

  • (iii) The coordinate description of a given Wyckoff position is related to that of the characteristic position by inversion or rotation of the coordinate system. Changing the superscript + into − in the descriptive symbol means that the Wyckoff position considered is mapped onto the characteristic position by an inversion through the origin, i.e. the two Wyckoff positions are enantiomorphic. A prime preceding the capital letter denotes that a 180° rotation is required.

    Examples

    • (1) [^{+}Y^{*}] is the descriptive symbol of the invariant lattice complex [I4_{1}32\; a] in its characteristic position. Wyckoff position [I4_{1}32\; b] with the descriptive symbol [^{-}Y^{*}] belongs to the same lattice complex. The point configurations of [I4_{1}32\; a] and [I4_{1}32\; b] are enantiomorphic.

    • (2) R is the descriptive symbol of the invariant lattice complex formed by all rhombohedral point lattices. Its characteristic position [R\bar{3}m\; a] corresponds to the coordinate triplets [0,0,0], [\textstyle{2 \over 3},\textstyle{1 \over 3},\textstyle{1 \over 3}], [\textstyle{1 \over 3},\textstyle{2 \over 3},\textstyle{2 \over 3}]. The same lattice complex is symbolized by ['R_{c}] in the non-characteristic position [R\bar{3}c\; b] with coordinate description [0,0,0], [0,0,\textstyle{1 \over 2}], [\textstyle{2 \over 3},\textstyle{1 \over 3},\textstyle{1 \over 3}], [\textstyle{2 \over 3},\textstyle{1 \over 3},\textstyle{5 \over 6}], [\textstyle{1 \over 3},\textstyle{2 \over 3},\textstyle{2 \over 3}], [\textstyle{1 \over 3},\textstyle{2 \over 3},\textstyle{1 \over 6}].

In non-characteristic Wyckoff positions, the descriptive symbols P and I may be replaced by C and F, respectively (tetragonal system), C by A or B (orthorhombic system), and C by A, B, I or F (monoclinic system). If the lattice complexes of rhombohedral space groups are described in rhombohedral coordinate systems, the symbols R, ['R_{c}], M and ['M_{c}] of the hexagonal description are replaced by P, I, J and [J^{*}], respectively (preceded by the letter r, if necessary, to distinguish them from the analogous cubic invariant lattice complexes).

3.4.3.1.3. Lattice complexes with degrees of freedom

| top | pdf |

The descriptive symbols of lattice complexes with degrees of freedom consist, in general, of four parts: the shift vector, the distribution symmetry, the central part and the site-set symbol. Either of the first two parts may be absent.

Example

[0\textstyle{1 \over 2}0] ..2 C4xxz is the descriptive symbol of the lattice complex [P4/nbm\ m] in its characteristic position: [0\textstyle{1 \over 2}0] is the shift vector, ..2 the distribution symmetry, C the central part and 4xxz the site-set symbol.

Normally, the central part is the symbol of an invariant lattice complex. The shift vector and central part together should be interpreted as described in Section 3.4.3.1.2[link]. The point configurations of the Wyckoff position being considered can be derived from that described by the central part by replacing each point by a finite set of points, the site set. All points of a site set are symmetry-equivalent under the site-symmetry group of the point that they replace. A site set is symbolized by a string of numbers and letters. The product of the numbers gives the number of points in the site set, whereas the letters supply information on the pattern formed by these points. Site sets replacing different points may be differently oriented. In this case, the distribution-symmetry part of the reference symbol shows symmetry operations that relate such site sets to one another. The orientation of the corresponding symmetry elements is indicated as in the oriented site-symmetry symbols (cf. Section 2.2.12). If all site sets have the same orientation, no distribution symmetry is given.

Examples

  • (1) [I4xxx\ (I\bar{4}3m\ 8c\ x,x,x)] designates a lattice complex, the point configurations of which are composed of tetrahedra 4xxx in parallel orientation replacing the points of a cubic body-centred lattice I. The vertices of these tetrahedra are located on body diagonals.

  • (2) [.. 2\ I4xxx\ (Pn\bar{3}m\ 8e\ x,x,x)] represents the lattice complex for which, in contrast to the first example, the tetrahedra 4xxx around [0,0,0] and [\textstyle{1 \over 2},\textstyle{1 \over 2},\textstyle{1 \over 2}] differ in their orientation. They are related by a twofold rotation ..2 .

  • (3) [00\textstyle{1 \over 4}\ P_{c}4x] is the descriptive symbol of Wyckoff position [P4_{2}/mcm\ 8l\ x,0,\textstyle{1 \over 4}]. Each corresponding point configuration consists of squares of points 4x replacing the points of a tetragonal primitive lattice P. In comparison with [P4x], [00\textstyle{1 \over 4}\ P_{c}4x] shows a unit-cell enlargement by [{\bf c}' = 2{\bf c}] and a subsequent shift by [0,0,\textstyle{1 \over 4}].

In the case of a Weissenberg complex (cf. Section 3.4.1.5.2[link]; Weissenberg, 1925[link]; Fischer et al., 1973[link]), the central part of the descriptive symbol always consists of two (or more) symbols of invariant lattice complexes belonging to the same crystal family and forming limiting complexes of the Weissenberg complex under consideration. The shift vector then refers to the first limiting complex. The corresponding site-set symbols are distinguished by containing the number 1 as the only number, i.e. each site set consists of only one point.

Example

In [\textstyle{1 \over 4}00\ .2.\ P_{a}B1z\ (Pmma\ 2e\ \textstyle{1 \over 4},0,z)], each of the two points [\textstyle{1 \over 4},0,0] and [\textstyle{3 \over 4},0,0], represented by [\textstyle{1 \over 4}00\ P_{a}], is replaced by a site set 1z containing only one point, i.e. the points of [\textstyle{1 \over 4}00\ P_{a}] are shifted along the z axis. The shifts of the two points are related by a twofold rotation .2., i.e. are running in opposite directions. The point configurations of the two limiting complexes [P_{a}] and B refer to the special parameter values [z = 0] and [z = \textstyle{1 \over 4}], respectively.

The central parts of some lattice complexes with two or three degrees of freedom are formed by the descriptive symbol of a univariant Weissenberg complex instead of that of an invariant lattice complex. This is the case only if the corresponding characteristic space-group type does not refer to a suitable invariant lattice complex.

Example

In [\textstyle{1 \over 4}00\ .2.\ P_{a}B1z2y\ (Pmma\ 4k\ \textstyle{1 \over 4},y,z)], each of the two points [\textstyle{1 \over 4},0,z] and [\textstyle{3 \over 4},0,\bar{z}], represented by [\textstyle{1\over 4}00] [.2.\ P_{a}B1z], is replaced by a site set 2y of two points forming a dumbbell. These dumbbells are oriented parallel to the y axis.

The symbol of a non-characteristic Wyckoff position is deduced from that of the characteristic position. The four parts of the descriptive symbol are subjected to the transformation necessary to map the characteristic Wyckoff position onto the Wyckoff position under consideration.

Example

The lattice complex with characteristic Wyckoff position Imma 8h [0,y,z] has the descriptive symbol [.2.\ B_{b}2yz] for this position. Another Wyckoff position of this lattice complex is [Imma\ 8i\ x,\textstyle{1 \over 4},z]. The corresponding point configurations are mapped onto each other by interchanging positive x and negative y directions and shifting by [\textstyle{1 \over 4},\textstyle{1 \over 4},\textstyle{1 \over 4}]. Therefore, the descriptive symbol for Wyckoff position Imma i is [\textstyle{1 \over 4}\textstyle{1 \over 4}\textstyle{1 \over 4}\ 2..\ A_{a}2xz].

In some cases, the Wyckoff position described by a lattice-complex symbol has more degrees of freedom than the lattice complex (see Section 3.4.1.5.1[link]). In such cases, a letter (or a string of letters) in brackets is added to the symbol.

Examples

tP[z] for P4 a, aP[xyz] for P1 a.

3.4.3.1.4. Properties of the descriptive symbols

| top | pdf |

Different kinds of relations between lattice complexes are brought out.

Examples

[P \leftrightarrow P4x \leftrightarrow P4x2z, \quad I4xxx \leftrightarrow ..2\ I4xxx, \quad P4x \leftrightarrow I4x].

In many cases, limiting-complex relations can be deduced from the symbols. This applies to limiting complexes due either to special metrical parameters (e.g. [cP \leftrightarrow rP] etc.) or to special values of coordinates (e.g. both P4x and P4xx are limiting complexes of P4xy). If the site set consists of only one point, the central part of the symbol specifies all corresponding limiting complexes without degrees of freedom that are due to special values of the coordinates (e.g. [2_{1}2_{1}]. [FA_{a}B_{b}C_{c}I_{a}I_{b}I_{c}1xyz] for the general position of [P2_{1}2_{1}2_{1}]).

3.4.3.2. Assignment of Wyckoff positions to Wyckoff sets and to lattice complexes

| top | pdf |

In Tables 3.4.3.2[link] and 3.4.3.3[link], the Wyckoff positions of all plane and space groups, respectively, are listed. Each Wyckoff position is identified by its Wyckoff letter together with its oriented site-symmetry symbol. It is assigned to its lattice complex by means of the reference symbol (cf. Section 3.4.1.3[link]). Characteristic Wyckoff positions are marked by asterisks (e.g. 2e in [P2/c]). If in a particular space group several Wyckoff positions belong to the same Wyckoff set (cf. Sections 1.4.4.3[link] and 3.4.1.2[link]; Koch & Fischer, 1975[link]), the reference symbol is given only once (e.g. Wyckoff positions 4l to 4o in [P4/mmm]). To enable this, the usual sequence of Wyckoff positions had to be changed in a few cases (e.g. in [P4_{2}/mcm]). For Wyckoff positions assigned to the same lattice complex but belonging to different Wyckoff sets, the reference symbol is repeated. In [I4/m], for example, Wyckoff positions 4c and 4d are both assigned to the lattice complex [P4/mmm\ a]. They do not belong, however, to the same Wyckoff set because the site-symmetry groups [2/m].. of 4c and [\bar{4}].. of 4d are different.

Table 3.4.3.2| top | pdf |
Plane groups: assignment of Wyckoff positions to Wyckoff sets and to lattice complexes

Wyckoff positions of the same Wyckoff set can be recognized by their consecutive listing without repetition of the reference symbol. Characteristic Wyckoff sets are marked by asterisks.

1 p1
1 a 1   p2 a P[xy]
           
2 p2
1 a 2 * [p2\ a] P
1 b       [0{\textstyle{1 \over 2}}\ P]
1 c       [{\textstyle{1 \over 2}}0\ P]
1 d       [{\textstyle{1 \over 2}{1 \over 2}}\ P]
2 e 1 * [p2\ e] P2xy
           
3 pm
1 a .m.   p2mm a P[y]
1 b       [{\textstyle{1 \over 2}}0\ P\hbox{[}y\hbox{]}]
2 c 1   p2mm e P2x[y]
           
4 pg
2 a 1   p2mg c [2..\ P_{b}C1x\hbox{[}y\hbox{]}]
           
5 cm
2 a .m.   c2mm a C[y]
4 b 1   c2mm d C2x[y]
           
6 p2mm
1 a 2mm * [p2mm\ a] P
1 b       [0{\textstyle{1 \over 2}}\ P]
1 c       [{\textstyle{1 \over 2}}0\ P]
1 d       [{\textstyle{1 \over 2}{1 \over 2}}\ P]
2 e ..m * [p2mm\ e] P2x
2 f       [0{\textstyle{1 \over 2}}\ P2x]
2 g .m.     P2y
2 h       [{\textstyle{1 \over 2}}0\ P2y]
4 i 1 * [p2mm\ i] P2x2y
           
7 p2mg
2 a 2..   p2mm a [P_{a}]
2 b       [0{\textstyle{1 \over 2}}\ P_{a}]
2 c .m. * [p2mg\ c] [{\textstyle{1 \over 4}}0\ 2..\ P_{a}C1y]
4 d 1 * [p2mg\ d] [.m.\ P_{a}2xy]
           
8 p2gg
2 a 2..   c2mm a C
2 b       [{\textstyle{1 \over 2}}0\ C]
4 c 1 * [p2gg\ c] .g. C2xy
           
9 c2mm
2 a 2mm * [c2mm\ a] C
2 b       [0{\textstyle{1 \over 2}}\ C]
4 c 2..   p2mm a [{\textstyle{1 \over 4}{1 \over 4}}\ P_{ab}]
4 d ..m * [c2mm\ d] C2x
4 e .m.     C2y
8 f 1 * [c2mm\ f] C2x2y
           
10 p4
1 a 4..   p4mm a P
1 b       [{\textstyle{1 \over 2}{1 \over 2}}\ P]
2 c 2..   p4mm a [0{\textstyle{1 \over 2}}\ C]
4 d 1 * [p4\ d] P4xy
           
11 p4mm
1 a 4mm * [p4mm\ a] P
1 b       [{\textstyle{1 \over 2}{1 \over 2}}\ P]
2 c 2mm.   p4mm a [0{\textstyle{1 \over 2}}\ C]
4 d .m. * [p4mm\ d] P4x
4 e       [{\textstyle{1 \over 2}{1 \over 2}}\ P4x]
4 f ..m * [p4mm\ f] P4xx
8 g 1 * [p4mm\ g] P4x2y
           
12 p4gm
2 a 4..   p4mm a C
2 b 2.mm   p4mm a [0{\textstyle{1 \over 2}}\ C]
4 c ..m * [p4gm\ c] [0{\textstyle{1 \over 2}}\ .g.\ C2xx]
8 d 1 * [p4gm\ d] ..m C4xy
           
13 p3
1 a 3..   p6mm a P
1 b       [{\textstyle{1 \over 3}{2 \over 3}}\ P]
1 c       [{\textstyle{2 \over 3}{1 \over 3}}\ P]
3 d 1 * [p3\ d] P3xy
           
14 p3m1
1 a 3m.   p6mm a P
1 b       [{\textstyle{1 \over 3}{2 \over 3}}\ P]
1 c       [{\textstyle{2 \over 3}{1 \over 3}}\ P]
3 d .m. * [p3m1\ d] [P3x\bar{x}]
6 e 1 * [p3m1\ e] [P3x\bar{x}2y]
           
15 p31m
1 a 3.m   p6mm a P
2 b 3..   p6mm b G
3 c ..m * [p31m\ c] P3x
6 d 1 * [p31m\ d] P3x2y
           
16 p6
1 a 6..   p6mm a P
2 b 3..   p6mm b G
3 c 2..   p6mm c N
6 d 1 * [p6\ d] P6xy
           
17 p6mm
1 a 6mm * [p6mm\ a] P
2 b 3m. * [p6mm\ b] G
3 c 2mm * [p6mm\ c] N
6 d ..m * [p6mm\ d] P6x
6 e .m. * [p6mm\ e] [P6x\bar{x}]
12 f 1 * [p6mm\ f] P6x2y

Table 3.4.3.3| top | pdf |
Space groups: assignment of Wyckoff positions to Wyckoff sets and to lattice complexes

Wyckoff positions of the same Wyckoff set can be recognized by their consecutive listing without repetition of the reference symbol. Characteristic Wyckoff sets are marked by asterisks.

1 P1
1 a 1   [P\bar{1}\ a] P[xyz]
           
2 [{\bi P}\bar{\bf 1}]
1 a [\bar{1}] * [ P\bar{1}\ a] P
1 b       [00{\textstyle{1 \over 2}}\ P]
1 c       [0{\textstyle{1 \over 2}}0\ P]
1 d       [{\textstyle{1 \over 2}}00\ P]
1 e       [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
1 f       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P]
1 g       [0{\textstyle{1 \over 2}{1 \over 2}}\ P]
1 h       [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
2 i 1 * [P\bar{1}\ i] P2xyz
           
3 P2
1 a 2   [P2/m\ a] P[y]
1 b       [00{\textstyle{1 \over 2}}\ P\hbox{[}y\hbox{]}]
1 c       [{\textstyle{1 \over 2}}00\ P\hbox{[}y\hbox{]}]
1 d       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P\hbox{[}y\hbox{]}]
2 e 1   [P2/m\ m] P2xz[y]
           
4 [{\bi P}{\bf 2}_{\bf 1}]
2 a 1   [P2_{1}/m\ e] [2_{1}\ P_{b}ACI1xz\hbox{[}y\hbox{]}]
           
5 C2
2 a 2   [C2/m\ a] C[y]
2 b       [00{\textstyle{1 \over 2}}\ C\hbox{[}y\hbox{]}]
4 c 1   [C2/m\ i] C2xz[y]
           
6 Pm
1 a m   [P2/m\ a] P[xz]
1 b       [0{\textstyle{1 \over 2}}0\ P{\hbox{[}xz\hbox{]}}]
2 c 1   [P2/m\ i] P2y[xz]
           
7 Pc
2 a 1   [P2/c\ e] [c\ P_{c}A1y\hbox{[}xz\hbox{]}]
           
8 Cm
2 a m   [C2/m\ a] C[xz]
4 b 1   [C2/m\ g] C2y[xz]
           
9 Cc
4 a 1   [C2/c\ e] [\bar{1}\ C_{c}F1y\hbox{[}xz\hbox{]}]
           
10 [{\bi P}{\bf 2}/{\bi m}]
1 [a] [2/m] * [ P2/m\ a] P
1 b       [0{\textstyle{1 \over 2}}0\ P]
1 c       [00{\textstyle{1 \over 2}}\ P]
1 d       [{\textstyle{1 \over 2}}00\ P]
1 e       [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
1 f       [0{\textstyle{1 \over 2}{1 \over 2}}\ P]
1 g       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P]
1 h       [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
2 i 2 * [ P2/m\ i] P2y
2 j       [{\textstyle{1 \over 2}}00\ P2y]
2 k       [00{\textstyle{1 \over 2}}\ P2y]
2 l       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P2y]
2 m m * [ P2/m\ m] P2xz
2 n       [0{\textstyle{1 \over 2}}0\ P2xz]
4 o 1 * [P2/m\ o] P2xz2y
           
11 [{\bi P}{\bf 2}_{\bf 1}/{\bi m}]
2 a [\bar{1}]   [P2/m\ a] [P_{b}]
2 b       [{\textstyle{1 \over 2}}00\ P_{b}]
2 c       [00{\textstyle{1 \over 2}}\ P_{b}]
2 d       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P_{b}]
2 e m * [ P2_{1}/m\ e] [0{1 \over 4}0\ 2_{1}P_{b}ACI1xz]
4 f 1 * [ P2_{1}/m\ f] [m\ P_{b}2xyz]
           
12 [{\bi C}{\bf 2}/{\bi m}]
2 a [2/m] * [ C2/m\ a] C
2 b       [0{\textstyle{1 \over 2}}0\ C]
2 c       [00{\textstyle{1 \over 2}}\ C]
2 d       [0{\textstyle{1 \over 2}{1 \over 2}}\ C]
4 e [\bar{1}]   [P2/m\ a] [{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}]
4 f       [{\textstyle{1 \over 4}{1 \over 4}{1 \over 2}}\ P_{ab}]
4 g 2 * [ C2/m\ g] C2y
4 h       [00{\textstyle{1 \over 2}}\ C2y]
4 i m * [C2/m\ i] C2xz
8 j 1 * [C2/m\ j] C2xz2y
           
13 [{\bi P}{\bf 2}/{\bi c}]
2 a [\bar{1}]   [P2/m\ a] [P_{c}]
2 b       [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}]
2 c       [0{\textstyle{1 \over 2}}0\ P_{c}]
2 d       [{\textstyle{1 \over 2}}00\ P_{c}]
2 e 2 * [ P2/c\ e] [00{\textstyle{1 \over 4}}\ c\ P_{c}A1y]
2 f       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 4}}\ c\ P_{c}A1y]
4 g 1 * [ P2/c\ g] [2\ P_{c}2xyz]
           
14 [{\bi P}{\bf 2}_{\bf 1}/{\bi c}]
2 a [\bar{1}]   [C2/m\ a] A
2 b       [{\textstyle{1 \over 2}}00\ A]
2 c       [00{\textstyle{1 \over 2}}\ A]
2 d       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ A]
4 e 1 * [ P2_{1}/c\ e] c A2xyz
           
15 [{\bi C}{\bf 2}/{\bi c}]
4 a [\bar{1}]   [C2/m\ a] [C_{c}]
4 b       [0{\textstyle{1 \over 2}}0\ C_{c}]
4 c       [{\textstyle{1 \over 4}{1 \over 4}}0\ F]
4 d       [{\textstyle{1 \over 4}{1 \over 4}{1 \over 2}}\ F]
4 e 2 * [C2/c\ e] [00{\textstyle{1 \over 4}}\ \bar{1}\ C_{c}F1y]
8 f 1 * [ C2/c\ f] [2_{1}\ C_{c}2xyz]
           
16 P222
1 a 222   Pmmm a P
1 b       [{\textstyle{1 \over 2}}00\ P]
1 c       [0{\textstyle{1 \over 2}}0\ P]
1 d       [00{\textstyle{1 \over 2}}\ P]
1 e       [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
1 f       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P]
1 g       [0{\textstyle{1 \over 2}{1 \over 2}}\ P]
1 h       [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
2 i 2..   Pmmm i P2x
2 j       [00{\textstyle{1 \over 2}}\ P2x]
2 k       [0{\textstyle{1 \over 2}}0\ P2x]
2 l       [0{\textstyle{1 \over 2}{1 \over 2}}\ P2x]
2 m .2.     P2y
2 n       [00{\textstyle{1 \over 2}}\ P2y]
2 o       [{\textstyle{1 \over 2}}00\ P2y]
2 p       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P2y]
2 q ..2     P2z
2 r       [{\textstyle{1 \over 2}}00\ P2z]
2 s       [0{\textstyle{1 \over 2}}0\ P2z]
2 t       [{\textstyle{1 \over 2}{1 \over 2}}0\ P2z]
4 u 1 * [ P222\ u] P2x2yz
           
17 [{\bi P}{\bf 222}_{\bf 1}]
2 a 2..   Pmma e [.2.\ P_{c}B1x]
2 b       [0{\textstyle{1 \over 2}}0\ .2.\ P_{c}B1x]
2 c .2.     [00{\textstyle{1 \over 4}}\ 2..\ P_{c}A1y]
2 d       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 4}}\ 2..\ P_{c}A1y]
4 e 1 * [ P222_{1}\ e] [.2.\ P_{c}B1x2yz]
           
18 [ {\bi P}{\bf 2}_{\bf 1}{\bf 2}_{\bf 1}{\bf 2}]
2 a ..2   Pmmn a [2_{1}..\ CI1z]
2 b       [0{\textstyle{1 \over 2}}0\ 2_{1}..\ CI1z]
4 c 1 * [P2_{1}2_{1}2\ c] [2_{1}..\ CI1z2xy]
           
19 [{\bi P}{\bf 2}_{\bf 1}{\bf 2}_{\bf 1}{\bf 2}_{\bf 1}]
4 a 1 * [P2_{1}2_{1}2_{1}\ a] [2_{1}2_{1}.\ FA_{a}B_{b}C_{c}I_{a}I_{b}I_{c}1xyz]
           
20 [{\bi C}{\bf 222}_{\bf 1}]
4 a 2..   Cmcm c [.2_{1}.\ C_{c}F1x]
4 b .2.     [00{\textstyle{1 \over 4}}\ 2_{1}..\ C_{c}F1y]
8 c 1 * [ C222_{1}\ c] [.2_{1}.\ C_{c}F1x2yz]
           
21 C222
2 a 222   Cmmm a C
2 b       [0{\textstyle{1 \over 2}}0\ C]
2 c       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ C]
2 d       [00{\textstyle{1 \over 2}}\ C]
4 e 2..   Cmmm g C2x
4 f       [00{\textstyle{1 \over 2}}\ C2x]
4 g .2.     C2y
4 h       [00{\textstyle{1 \over 2}}\ C2y]
4 i ..2   Cmmm k C2z
4 j       [0{\textstyle{1 \over 2}}0\ C2z]
4 k ..2   Cmme g [{\textstyle{1 \over 4}{1 \over 4}}0\ 2..\ P_{ab}F1z]
8 l 1 * [C222\ l] C2x2yz
           
22 F222
4 a 222   Fmmm a F
4 b       [00{\textstyle{1 \over 2}}\ F]
4 c       [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F]
4 d       [{\textstyle{1 \over 4}{1 \over 4}{3 \over 4}}\ F]
8 e 2..   Fmmm g F2x
8 j       [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F2x]
8 f .2.     F2y
8 i       [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F2y]
8 g ..2     F2z
8 h       [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F2z]
16 k 1 * [ F222\ k] F2x2yz
           
23 I222
2 a 222   Immm a I
2 b       [{\textstyle{1 \over 2}}00\ I]
2 c       [00{\textstyle{1 \over 2}}\ I]
2 d       [0{\textstyle{1 \over 2}}0\ I]
4 e 2..   Immm e I2x
4 f       [00{\textstyle{1 \over 2}}\ I2x]
4 g .2.     I2y
4 h       [{\textstyle{1 \over 2}}00\ I2y]
4 i ..2     I2z
4 j       [0{\textstyle{1 \over 2}}0\ I2z]
8 k 1 * [ I222\ k] I2x2yz
           
24 [{\bi I}{\bf 2}_{\bf 1}{\bf 2}_{\bf 1}{\bf 2}_{\bf 1}]
4 a 2..   Imma e [{\textstyle{1 \over 4}}0{\textstyle{1 \over 4}}\ ..2\ C_{c}B_{b}1x]
4 b .2.     [{\textstyle{1 \over 4}{1 \over 4}}0\ 2..\ A_{a}C_{c}1y]
4 c ..2     [0{\textstyle{1 \over 4}{1 \over 4}}\ .2.\ B_{b}A_{a}1z]
8 d 1 * [ I2_{1}2_{1}2_{1}\ d] [{\textstyle{1 \over 4}}0{\textstyle{1 \over 4}}\ ..2\ C_{c}B_{b}1x2yz]
           
25 Pmm2
1 a mm2   Pmmm a P[z]
1 b       [0{\textstyle{1 \over 2}}0\ P\hbox{[}z\hbox{]}]
1 c       [{\textstyle{1 \over 2}}00\ P\hbox{[}z\hbox{]}]
1 d       [{\textstyle{1 \over 2}{1 \over 2}}0\ P\hbox{[}z\hbox{]}]
2 e .m.   Pmmm i P2x[z]
2 f       [0{\textstyle{1 \over 2}}0\ P2x\hbox{[}z\hbox{]}]
2 g m..     P2y[z]
2 h       [{\textstyle{1 \over 2}}00\ P2y\hbox{[}z\hbox{]}]
4 i  1   Pmmm u P2x2y[z]
           
26 [{\bi P}{\bi m}{\bi c}{\bf 2}_{\bf 1}]
2 a m..   Pmma e [2..\ P_{c}A1y\hbox{[}z\hbox{]}]
2 b       [{\textstyle{1 \over 2}}00\ 2..\ P_{c}A1y\hbox{[}z\hbox{]}]
4 c 1   Pmma k [2..\ P_{c}A1y2x\hbox{[}z\hbox{]}]
           
27 Pcc2
2 a ..2   Pmmm a [P_{c}\hbox{[}z\hbox{]}]
2 b       [0{\textstyle{1 \over 2}}0\ P_{c}\hbox{[}z\hbox{]}]
2 c       [{\textstyle{1 \over 2}}00\ P_{c}\hbox{[}z\hbox{]}]
2 d       [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}\hbox{[}z\hbox{]}]
4 e 1   Pccm q [2..\ P_{c}2xy\hbox{[}z\hbox{]}]
           
28 Pma2
2 a ..2   Pmmm a [P_{a}\hbox{[}z\hbox{]}]
2 b       [0{\textstyle{1 \over 2}}0\ P_{a}\hbox{[}z\hbox{]}]
2 c m..   Pmma e [{\textstyle{1 \over 4}}00\ ..2\ P_{a}C1y\hbox{[}z\hbox{]}]
4 d 1   Pmma i [m..\ P_{a}2xy\hbox{[}z\hbox{]}]
           
29 [{\bi P}{\bi c}{\bi a}{\bf 2}_{\bf 1}]
4 a 1   Pbcm d [.2\bar{1}\ P_{ac}B_{a}C_{c}F1xy\hbox{[}z\hbox{]}]
           
30 Pnc2
2 a ..2   Cmmm a A[z]
2 b       [{\textstyle{1 \over 2}}00\ A\hbox{[}z\hbox{]}]
4 c 1   Pmna h 2.. A2xy[z]
           
31 [{\bi P}{\bi m}{\bi n}{\bf 2}_{\bf 1}]
2 a m..   Pmmn a [..2_{1}\ BI1y\hbox{[}z\hbox{]}]
4 b 1   Pmmn e [..2_{1}\ BI1y2x\hbox{[}z\hbox{]}]
           
32 Pba2
2 a ..2   Cmmm a C[z]
2 b       [0{\textstyle{1 \over 2}}0\ C\hbox{[}z\hbox{]}]
4 c 1   Pbam g b.. C2xy[z]
           
33 [{\bi P}{\bi n}{\bi a}{\bf 2}_{\bf 1}]
4 a 1   Pnma c [\bar{1}2_{1}. \ C_{c}A_{a}FI_{a}1xy\hbox{[}z\hbox{]}]
           
34 Pnn2
2 a ..2   Immm a I[z]
2 b       [0{\textstyle{1 \over 2}}0\ I\hbox{[}z\hbox{]}]
4 c 1   Pnnm g n.. I2xy[z]
           
35 Cmm2
2 a mm2   Cmmm a C[z]
2 b       [0{\textstyle{1 \over 2}}0\ C\hbox{[}z\hbox{]}]
4 c ..2   Pmmm a [{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}\hbox{[}z\hbox{]}]
4 d .m.   Cmmm g C2x[z]
4 e m..     C2y[z]
8 f 1   Cmmm p C2x2y[z]
           
36 [{\bi C}{\bi m}{\bi c}{\bf 2}_{\bf 1}]
4 a m..   Cmcm c [2_{1}..\ C_{c}F1y\hbox{[}z\hbox{]}]
8 b 1   Cmcm g [2_{1}..\ C_{c}F1y2x\hbox{[}z\hbox{]}]
           
37 Ccc2
4 a ..2   Cmmm a [C_{c}\hbox{[}z\hbox{]}]
4 b       [0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
4 c ..2   Fmmm a [{\textstyle{1 \over 4}{1 \over 4}}0\ F\hbox{[}z\hbox{]}]
8 d 1   Cccm l [n..\ C_{c}2xy\hbox{[}z\hbox{]}]
           
38 Amm2
2 a mm2   Cmmm a A[z]
2 b       [{\textstyle{1 \over 2}}00\ A\hbox{[}z\hbox{]}]
4 c .m.   Cmmm k A2x[z]
4 d m..   Cmmm g A2y[z]
4 e       [{\textstyle{1 \over 2}}00\ A2y\hbox{[}z\hbox{]}]
8 f 1   Cmmm n A2x2y[z]
           
39 Aem2
4 a ..2   Pmmm a [P_{bc}\hbox{[}z\hbox{]}]
4 b       [{\textstyle{1 \over 2}}00\ P_{bc}\hbox{[}z\hbox{]}]
4 c .m.   Cmme g [0{\textstyle{1 \over 4}}0\ ..2\ P_{bc}F1x\hbox{[}z\hbox{]}]
8 d 1   Cmme m [.m.\ P_{bc}2xy\hbox{[}z\hbox{]}]
           
40 Ama2
4 a ..2   Cmmm a [A_{a}\hbox{[}z\hbox{]}]
4 b m..   Cmcm c [{\textstyle{1 \over 4}}00\ ..2_{1}\ A_{a}F1y\hbox{[}z\hbox{]}]
8 c 1   Cmcm f [.n.\ A_{a}2xy\hbox{[}z\hbox{]}]
           
41 Aea2
4 a ..2   Fmmm a F[z]
8 b 1   Cmce f .2. F2xy[z]
           
42 Fmm2
4 a mm2   Fmmm a F[z]
8 b ..2   Pmmm a [{\textstyle{1 \over 4}{1 \over 4}}0\ P_{2}\hbox{[}z\hbox{]}]
8 c m..   Fmmm g F2y[z]
8 d .m.     F2x[z]
16 e 1   Fmmm m F2x2y[z]
           
43 Fdd2
8 a ..2   Fddd a D[z]
16 b 1 * [Fdd2\ b] d.. D2xy[z]
           
44 Imm2
2 a mm2   Immm a I[z]
2 b       [0{\textstyle{1 \over 2}}0\ I\hbox{[}z\hbox{]}]
4 c .m.   Immm e I2x[z]
4 d m..     I2y[z]
8 e 1   Immm l I2x2y[z]
           
45 Iba2
4 a ..2   Cmmm a [C_{c}\hbox{[}z\hbox{]}]
4 b       [0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
8 c 1   Ibam j [b..\ C_{c}2xy\hbox{[}z\hbox{]}]
           
46 Ima2
4 a ..2   Cmmm a [A_{a}\hbox{[}z\hbox{]}]
4 b m..   Imma e [{\textstyle{1 \over 4}}00\ 2..\ A_{a}C_{c}1y\hbox{[}z\hbox{]}]
8 c 1   Imma h [2..\ A_{a}2xy\hbox{[}z\hbox{]}]
           
47 Pmmm
1 a mmm * [ Pmmm\ a] P
1 b       [{\textstyle{1 \over 2}}00\ P]
1 c       [00{\textstyle{1 \over 2}}\ P]
1 d       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P]
1 e       [0{\textstyle{1 \over 2}}0\ P]
1 f       [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
1 g       [0{\textstyle{1 \over 2}{1 \over 2}}\ P]
1 h       [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}]
2 i 2mm * [ Pmmm\ i] P2x
2 j       [00{\textstyle{1 \over 2}}\ P2x]
2 k       [0{\textstyle{1 \over 2}}0\ P2x]
2 l       [0{\textstyle{1 \over 2}{1 \over 2}}\ P2x]
2 m m2m     P2y
2 n       [00{\textstyle{1 \over 2}}\ P2y]
2 o       [{\textstyle{1 \over 2}}00\ P2y]
2 p       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ P2y]
2 q mm2     P2z
2 r       [0{\textstyle{1 \over 2}}0\ P2z]
2 s       [{\textstyle{1 \over 2}}00\ P2z]
2 t       [{\textstyle{1 \over 2}{1 \over 2}}0\ P2z]
4 u m.. * [Pmmm\ u] P2y2z
4 v       [{\textstyle{1 \over 2}}00\ P2y2z]
4 w .m.     P2x2z
4 x       [0{\textstyle{1 \over 2}}0\ P2x2z]
4 y ..m     P2x2y
4 z       [00{\textstyle{1 \over 2}}\ P2x2y]
8 α 1 * [Pmmm\ \alpha] P2x2y2z
           
48 Pnnn
2 a 222   Immm a I
2 b       [{\textstyle{1 \over 2}}00\ I]
2 c       [00{\textstyle{1 \over 2}}\ I]
2 d       [0{\textstyle{1 \over 2}}0\ I]
4 e [\bar{1}]   Fmmm a [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F]
4 f       [{\textstyle{3 \over 4}{3 \over 4}{3 \over 4}}\ F]
4 g 2..   Immm e I2x
4 h       [00{\textstyle{1 \over 2}}\ I2x]
4 i .2.     I2y
4 j       [{\textstyle{1 \over 2}}00\ I2y]
4 k ..2     I2z
4 l       [0{\textstyle{1 \over 2}}0\ I2z]
8 m 1 * [Pnnn\ m] n.. I2x2yz
           
49 Pccm
2 a [..2/m]   Pmmm a [P_{c}]
2 b       [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}]
2 c       [0{\textstyle{1 \over 2}}0\ P_{c}]
2 d       [{\textstyle{1 \over 2}}00\ P_{c}]
2 e 222   Pmmm a [00{\textstyle{1 \over 4}}\ P_{c}]
2 f       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 4}}\ P_{c}]
2 g       [0{\textstyle{1 \over 2}{1 \over 4}}\ P_{c}]
2 h       [{\textstyle{1 \over 2}{1 \over 2}{1 \over 4}}\ P_{c}]
4 i 2..   Pmmm i [00{\textstyle{1 \over 4}}\ P_{c}2x]
4 j       [0{\textstyle{1 \over 2}{1 \over 4}}\ P_{c}2x]
4 k .2.     [00{\textstyle{1 \over 4}}\ P_{c}2y]
4 l       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 4}}\ P_{c}2y]
4 m ..2   Pmmm i [P_{c}2z]
4 n       [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}2z]
4 o       [0{\textstyle{1 \over 2}}0\ P_{c}2z]
4 p       [{\textstyle{1 \over 2}}00\ P_{c}2z]
4 q ..m * [ Pccm\ q] [2..\ P_{c}2xy]
8 r 1 * [Pccm\ r] [c..\ P_{c}2xy2z]
           
50 Pban
2 a 222   Cmmm a C
2 b       [{\textstyle{1 \over 2}}00\ C]
2 c       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ C]
2 d       [00{\textstyle{1 \over 2}}\ C]
4 e [\bar{1}]   Pmmm a [{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}]
4 f       [{\textstyle{1 \over 4}{1 \over 4}{1 \over 2}}\ P_{ab}]
4 g 2..   Cmmm g C2x
4 h       [00{\textstyle{1 \over 2}}\ C2x]
4 i .2.     C2y
4 j       [00{\textstyle{1 \over 2}}\ C2y]
4 k ..2   Cmmm k C2z
4 l       [0{\textstyle{1 \over 2}}0\ C2z]
8 m 1 * [Pban\ m] b.. C2x2yz
           
51 Pmma
2 a [.2/m.]   Pmmm a [P_{a}]
2 b       [0{\textstyle{1 \over 2}}0\ P_{a}]
2 c       [00{\textstyle{1 \over 2}}\ P_{a}]
2 d       [0{\textstyle{1 \over 2}{1 \over 2}}\ P_{a}]
2 e mm2 * [Pmma\ e] [{\textstyle{1 \over 4}}00\ .2.\ P_{a}B1z]
2 f       [{\textstyle{1 \over 4}{1 \over 2}}0\ .2.\ P_{a}B1z]
4 g .2.   Pmmm i [P_{a}2y]
4 h       [00{\textstyle{1 \over 2}}\ P_{a}2y]
4 i .m. * [Pmma\ i] [m..\ P_{a}2xz]
4 j       [0{\textstyle{1 \over 2}}0\ m..\ P_{a}2xz]
4 k m.. * [Pmma\ k] [{\textstyle{1 \over 4}}00\ .2.\ P_{a}B1z2y]
8 l 1 * [Pmma\ l] [m..\ P_{a}2xz2y]
           
52 Pnna
4 a [\bar{1}]   Cmmm a [A_{a}]
4 b       [00{\textstyle{1 \over 2}}\ A_{a}]
4 c ..2   Imma e [{\textstyle{1 \over 4}}0{\textstyle{1 \over 4}}\ .2.\ B_{b}A_{a}1z]
4 d 2..   Cmcm c [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ ..2_{1}\ B_{b}F1x]
8 e 1 * [Pnna\ e] [2.2\ A_{a}2xyz]
           
53 Pmna
2 a [2/m..]   Cmmm a B
2 b       [{\textstyle{1 \over 2}}00\ B]
2 c       [{\textstyle{1 \over 2}{1 \over 2}}0\ B]
2 d       [0{\textstyle{1 \over 2}}0\ B]
4 e 2..   Cmmm g B2x
4 f       [0{\textstyle{1 \over 2}}0\ B2x]
4 g .2.   Pmma e [{\textstyle{1 \over 4}}0{\textstyle{1 \over 4}}\ (2..\ P_{c}A1y)_{a}]
4 h m.. * [Pmna\ h] .2. B2yz
8 i 1 * [Pmna\ i] .2. B2yz2x
           
54 Pcca
4 a [\bar{1}]   Pmmm a [P_{ac}]
4 b       [0{\textstyle{1 \over 2}}0\ P_{ac}]
4 c .2.   Cmme g [00{\textstyle{1 \over 4}}\ ..2\ P_{ac}F1y]
4 d ..2   Pmma e [{\textstyle{1 \over 4}}00\ (.2. \ P_{a}B1z)_{c}]
4 e       [{\textstyle{1 \over 4}{1 \over 2}}0\ (.2.\ P_{a}B1z)_{c}]
8 f 1 * [Pcca\ f] [.22\ P_{ac}2xyz]
           
55 Pbam
2 a [..2/m]   Cmmm a C
2 b       [00{\textstyle{1 \over 2}}\ C]
2 c       [0{\textstyle{1 \over 2}}0\ C]
2 d       [0{\textstyle{1 \over 2}{1 \over 2}}\ C]
4 e ..2   Cmmm k C2z
4 f       [0{\textstyle{1 \over 2}}0\ C2z]
4 g ..m * [Pbam\ g] b.. C2xy
4 h       [00{\textstyle{1 \over 2}}\ b..\ C2xy]
8 i 1 * [Pbam\ i] b.. C2xy2z
           
56 Pccn
4 a [\bar{1}]   Fmmm a F
4 b       [00{\textstyle{1 \over 2}}\ F]
4 c ..2   Pmmn a [{\textstyle{1 \over 4}{1 \over 4}}0\ (2_{1}..\ CI1z)_{c}]
4 d       [{\textstyle{1 \over 4}{3 \over 4}}0\ (2_{1}..\ CI1z)_{c}]
8 e 1 * [Pccn\ e] c.2 F2xyz
           
57 Pbcm
4 a [\bar{1}]   Pmmm a [P_{bc}]
4 b       [{\textstyle{1 \over 2}}00\ P_{bc}]
4 c 2..   Pmma e [0{\textstyle{1 \over 4}}0\ (..2\ P_{b}C1x)_{c}]
4 d ..m * [Pbcm\ d] [00{\textstyle{1 \over 4}}\ 2.\bar{1}\ P_{bc}A_{b}C_{c}F1xy]
8 e 1 * [Pbcm\ e] [2.m\ P_{bc}2xyz]
           
58 Pnnm
2 a [..2/m]   Immm a I
2 b       [00{\textstyle{1 \over 2}}\ I]
2 c       [0{\textstyle{1 \over 2}}0\ I]
2 d       [0{\textstyle{1 \over 2}{1 \over 2}}\ I]
4 e ..2   Immm e I2z
4 f       [0{\textstyle{1 \over 2}}0\ I2z]
4 g ..m * [Pnnm\ g] n.. I2xy
8 h 1 * [Pnnm\ h] n.. I2xy2z
           
59 Pmmn
2 a mm2 * [Pmmn\ a] [2_{1}..\ CI1z]
2 b       [0{\textstyle{1 \over 2}}0\ 2_{1}..\ CI1z]
4 c [\bar{1}]   Pmmm a [{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}]
4 d       [{\textstyle{1 \over 4}{1 \over 4}{1 \over 2}}\ P_{ab}]
4 e m.. * [Pmmn\ e] [2_{1}..\ CI1z2y]
4 f .m.     [.2_{1}.\ CI1z2x]
8 g 1 * [Pmmn\ g] [{\textstyle{1 \over 4}{1 \over 4}}0\ mm.\ P_{ab}2xyz]
           
60 Pbcn
4 a [\bar{1}]   Cmmm a [C_{c}]
4 b       [0{\textstyle{1 \over 2}}0\ C_{c}]
4 c .2.   Cmcm c [00{\textstyle{1 \over 4}}\ 2_{1}..\ C_{c}F1y]
8 d 1 * [Pbcn\ d] [b2.\ C_{c}2xyz]
           
61 Pbca
4 a [\bar{1}]   Fmmm a F
4 b       [00{\textstyle{1 \over 2}}\ F]
8 c 1 * [Pbca\ c] bc. F2xyz
           
62 Pnma
4 a [\bar{1}]   Cmmm a [B_{b}]
4 b       [00{\textstyle{1 \over 2}}\ B_{b}]
4 c .m. * [Pnma\ c] [0{\textstyle{1 \over 4}}0\ \bar{1}. 2_{1}\ B_{b}A_{a}FI_{a}1xz]
8 d 1 * [Pnma\ d] [.ma\ B_{b}2xyz]
           
63 Cmcm
4 a [2/m..]   Cmmm a [C_{c}]
4 b       [0{\textstyle{1 \over 2}}0\ C_{c}]
4 c m2m * [Cmcm\ c] [00{\textstyle{1 \over 4}}\ 2_{1}..\ C_{c}F1y]
8 d [\bar{1}]   Pmmm a [{\textstyle{1 \over 4}{1 \over 4}}0\ P_{2}]
8 e 2..   Cmmm g [C_{c}2x]
8 f m.. * [Cmcm\ f] [.n.\ C_{c}2yz]
8 g ..m * [Cmcm\ g] [00{\textstyle{1 \over 4}}\ 2_{1}..\ C_{c}F1y2x]
16 h 1 * [Cmcm\ h] [.n.\ C_{c}2yz2x]
           
64 Cmce
4 a [2/m..]   Fmmm a F
4 b       [00{\textstyle{1 \over 2}}\ F]
8 c [\bar{1}]   Pmmm a [{\textstyle{1 \over 4}{1 \over 4}}0\ P_{2}]
8 d 2..   Fmmm g F2x
8 e .2.   Pmma e [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ (2..\ P_{c}A1y)_{ab}]
8 f m.. * [Cmce\ f] .2. F2yz
16 g 1 * [Cmce\ g] .2. F2yz2x
           
65 Cmmm
2 a mmm * [Cmmm\ a] C
2 b       [{\textstyle{1 \over 2}}00\ C]
2 c       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ C]
2 d       [00{\textstyle{1 \over 2}}\ C]
4 e [..2/m]   Pmmm a [{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}]
4 f       [{\textstyle{1 \over 4}{1 \over 4}{1 \over 2}}\ P_{ab}]
4 g 2mm * [Cmmm\ g] C2x
4 h       [00{\textstyle{1 \over 2}}\ C2x]
4 i m2m     C2y
4 j       [00{\textstyle{1 \over 2}}\ C2y]
4 k mm2 * [Cmmm\ k] C2z
4 l       [0{\textstyle{1 \over 2}}0\ C2z]
8 m ..2   Pmmm i [{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}2z]
8 n m.. * [Cmmm\ n] C2y2z
8 o .m.     C2x2z
8 p ..m * [Cmmm\ p] C2x2y
8 q       [00{\textstyle{1 \over 2}}\ C2x2y]
16 r 1 * [Cmmm\ r] C2x2y2z
           
66 Cccm
4 a 222   Cmmm a [00{\textstyle{1 \over 4}}\ C_{c}]
4 b       [0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
4 c [..2/m]   Cmmm a [C_{c}]
4 d       [0{\textstyle{1 \over 2}}0\ C_{c}]
4 e [..2/m]   Fmmm a [{\textstyle{1 \over 4}{1 \over 4}}0\ F]
4 f       [{\textstyle{1 \over 4}{3 \over 4}}0\ F]
8 g 2..   Cmmm g [00{\textstyle{1 \over 4}}\ C_{c}2x]
8 h .2.     [00{\textstyle{1 \over 4}}\ C_{c}2y]
8 i ..2   Cmmm k [C_{c}2z]
8 j       [0{\textstyle{1 \over 2}}0\ C_{c}2z]
8 k ..2   Fmmm g [{\textstyle{1 \over 4}{1 \over 4}}0\ F2z]
8 l ..m * [Cccm\ l] [c..\ C_{c}2xy]
16 m 1 * [Cccm\ m] [c..\ C_{c}2xy2z]
           
67 Cmme
4 a 222   Pmmm a [{\textstyle{1 \over 4}}00\ P_{ab}]
4 b       [{\textstyle{1 \over 4}}0{\textstyle{1 \over 2}}\ P_{ab}]
4 c [2/m..]   Pmmm a [P_{ab}]
4 d       [00{\textstyle{1 \over 2}}\ P_{ab}]
4 e [.2/m.]     [{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}]
4 f       [{\textstyle{1 \over 4}{1 \over 4}{1 \over 2}}\ P_{ab}]
4 g mm2 * [ Cmme\ g] [0{\textstyle{1 \over 4}}0\ 2..\ P_{ab}F1z]
8 h 2..   Pmmm i [P_{ab}2x]
8 i       [00{\textstyle{1 \over 2}}\ P_{ab}2x]
8 j .2.     [{\textstyle{1 \over 4}}00\ P_{ab}2y]
8 k       [{\textstyle{1 \over 4}}0{\textstyle{1 \over 2}}\ P_{ab}2y]
8 l ..2   Pmmm i [{\textstyle{1 \over 4}}00\ P_{ab}2z]
8 m m.. * [Cmme\ m] [.m.\ P_{ab}2yz]
8 n .m.     [0{\textstyle{1 \over 4}}0\ m..\ P_{ab}2xz]
16 o 1 * [Cmme\ o] [.m.\ P_{ab}2yz2x]
           
68 Ccce
4 a 222   Fmmm a F
4 b       [00{\textstyle{1 \over 2}}\ F]
8 c [\bar{1}]   Pmmm a [{\textstyle{1 \over 4}}0{\textstyle{1 \over 4}}\ P_{2}]
8 d       [0{\textstyle{1 \over 4}{1 \over 4}}\ P_{2}]
8 e 2..   Fmmm g F2x
8 f .2.     F2y
8 g ..2   Fmmm g F2z
8 h ..2   Cmme g [{\textstyle{1 \over 4}{1 \over 4}}0\ (2..\ P_{ab}F1z)_{c}]
16 i 1 * [Ccce\ i] c.. F2x2yz
           
69 Fmmm
4 a mmm * [Fmmm\ a] F
4 b       [00{\textstyle{1 \over 2}}\ F]
8 c [2/m..]   Pmmm a [0{\textstyle{1 \over 4}{1 \over 4}}\ P_{2}]
8 d [.2/m.]     [{\textstyle{1 \over 4}}0{\textstyle{1 \over 4}}\ P_{2}]
8 e [..2/m]     [{\textstyle{1 \over 4}{1 \over 4}}0\ P_{2}]
8 f 222   Pmmm a [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
8 g 2mm * [Fmmm\ g] F2x
8 h m2m     F2y
8 i mm2     F2z
16 j ..2   Pmmm i [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}2z]
16 k .2.     [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}2y]
16 l 2..     [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}2x]
16 m m.. * [Fmmm\ m] F2y2z
16 n .m.     F2x2z
16 o ..m     F2x2y
32 p 1 * [Fmmm\ p] F2x2y2z
           
70 Fddd
8 a 222 * [Fddd\ a] D
8 b       [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ D]
16 c [\bar{1}] * [Fddd\ c] T
16 d       [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ T]
16 e 2.. * [Fddd\ e] D2x
16 f .2.     D2y
16 g ..2     D2z
32 h 1 * [Fddd\ h] d.. D2x2yz
           
71 Immm
2 a mmm * [Immm\ a] I
2 b       [0{\textstyle{1 \over 2}{1 \over 2}}\ I]
2 c       [{\textstyle{1 \over 2}{1 \over 2}}0\ I]
2 d       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ I]
4 e 2mm * [Immm\ e] I2x
4 f       [0{\textstyle{1 \over 2}}0\ I2x]
4 g m2m     I2y
4 h       [00{\textstyle{1 \over 2}}\ I2y]
4 i mm2     I2z
4 j       [{\textstyle{1 \over 2}}00\ I2z]
8 k [\bar{1}]   Pmmm a [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
8 l m.. * [Immm\ l] I2y2z
8 m .m.     I2x2z
8 n ..m     I2x2y
16 o 1 * [Immm\ o] I2x2y2z
           
72 Ibam
4 a 222   Cmmm a [00{\textstyle{1 \over 4}}\ C_{c}]
4 b       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 4}}\ C_{c}]
4 c [..2/m]   Cmmm a [C_{c}]
4 d       [{\textstyle{1 \over 2}}00\ C_{c}]
8 e [\bar{1}]   Pmmm a [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
8 f 2..   Cmmm g [00{\textstyle{1 \over 4}}\ C_{c}2x]
8 g .2.     [00{\textstyle{1 \over 4}}\ C_{c}2y]
8 h ..2   Cmmm k [C_{c}2z]
8 i       [0{\textstyle{1 \over 2}}0\ C_{c}2z]
8 j ..m * [Ibam\ j] [c..\ C_{c}2xy]
16 k 1 * [Ibam\ k] [c..\ C_{c}2xy2z]
           
73 Ibca
8 a [\bar{1}]   Pmmm a [P_{2}]
8 b       [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
8 c 2..   Cmme g [00{\textstyle{1 \over 4}}\ (.2.\ P_{bc}F1x)_{a}]
8 d .2.     [{\textstyle{1 \over 4}}00\ (..2\ P_{ac}F1y)_{b}]
8 e ..2     [0{\textstyle{1 \over 4}}0\ (2..\ P_{ab}F1z)_{c}]
16 f 1 * [Ibca\ f] [22.\ P_{2}2xyz]
           
74 Imma
4 a [2/m..]   Cmmm a [B_{b}]
4 b       [00{\textstyle{1 \over 2}}\ B_{b}]
4 c [.2/m.]     [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ A_{a}]
4 d       [{\textstyle{1 \over 4}{1 \over 4}{3 \over 4}}\ A_{a}]
4 e mm2 * [Imma\ e] [0{\textstyle{1 \over 4}}0\ .2.\ B_{b}A_{a}1z]
8 f 2..   Cmmm g [B_{b}2x]
8 g .2.     [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ A_{a}2y]
8 h m.. * [Imma\ h] [.2.\ B_{b}2yz]
8 i .m.     [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ 2..\ A_{a}2xz]
16 j 1 * [Imma\ j] [.2.\ B_{b}2yz2x]
           
75 P4
1 a 4..   [P4/mmm\ a] P[z]
1 b       [{\textstyle{1 \over 2}{1 \over 2}}0\ P\hbox{[}z\hbox{]}]
2 c 2..   [P4/mmm\ a] [0{\textstyle{1 \over 2}}0\ C\hbox{[}z\hbox{]}]
4 d 1   [P4/m\ j] P4xy[z]
           
76 [{\bi P}{\bf 4}_{\bf 1}]
4 a 1 * [P4_{3}\ a] [4_{1}..\ P_{cc}{^{v}D}I_{c}1xy\hbox{[}z\hbox{]}]
           
77 [{\bi P}{\bf 4}_{\bf 2}]
2 a 2..   [P4/mmm\ a] [P_{c}\hbox{[}z\hbox{]}]
2 b       [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}\hbox{[}z\hbox{]}]
2 c 2..   [I4/mmm\ a] [0{\textstyle{1 \over 2}}0\ I\hbox{[}z\hbox{]}]
4 d 1   [P4_{2}/m\ j] [\bar{4}..\ P_{c}2xy\hbox{[}z\hbox{]}]
           
78 [{\bi P}{\bf 4}_{\bf 3}]
4 a   * [P4_{3}\ a] [4_{3}..\ P_{cc}{^{v}D}I_{c}1xy\hbox{[}z\hbox{]}]
           
79 I4
2 a 4..   [I4/mmm\ a] I[z]
4 b 2..   [P4/mmm\ a] [0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
8 c 1   [I4/m\ h] I4xy[z]
           
80 [{\bi I}{\bf 4}_{\bf 1}]
4 a 2..   [I4_{1}/amd\ a] [^{v}D\hbox{[}z\hbox{]}]
8 b 1 * [I4_{1}\ b] [4_{1}..\ ^{v}D2xy\hbox{[}z\hbox{]}]
           
81 [{\bi P}\bar{\bf 4}]
1 a [\bar{4}..]   [P4/mmm\ a] P
1 b       [00{\textstyle{1 \over 2}}\ P]
1 c       [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
1 d       [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
2 e 2..   [P4/mmm\ g] P2z
2 f       [{\textstyle{1 \over 2}{1 \over 2}}0\ P2z]
2 g 2..   [P4/nmm\ c] [0{\textstyle{1 \over 2}}0\ ..2\ CI1z]
4 h 1 * [P\bar{4}\ h] P4xyz
           
82 [{\bi I}\bar{\bf 4}]
2 a [\bar{4}..]   [I4/mmm\ a] I
2 b       [00{\textstyle{1 \over 2}}\ I]
2 c       [0{\textstyle{1 \over 2}{1 \over 4}}\ I]
2 d       [0{\textstyle{1 \over 2}{3 \over 4}}\ I]
4 e 2..   [I4/mmm\ e] I2z
4 f       [0{\textstyle{1 \over 2}{1 \over 4}}\ I2z]
8 g 1 * [I\bar{4}\ g] I4xyz
           
83 [{\bi P}{\bf 4}/{\bi m}]
1 a [4/m..]   [P4/mmm\ a] P
1 b       [00{\textstyle{1 \over 2}}\ P]
1 c       [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
1 d       [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
2 e [2/m..]   [P4/mmm\ a] [0{\textstyle{1 \over 2}}0\ C]
2 f       [0{\textstyle{1 \over 2}{1 \over 2}}\ C]
2 g 4..   [P4/mmm\ g] P2z
2 h       [{\textstyle{1 \over 2}{1 \over 2}}0\ P2z]
4 i 2..   [P4/mmm\ g] [0{\textstyle{1 \over 2}}0\ C2z]
4 j m.. * [P4/m\ j] P4xy
4 k       [00{\textstyle{1 \over 2}}\ P4xy]
8 l 1 * [P4/m\ l] P4xy2z
           
84 [{\bi P}{\bf 4}_{\bf 2}/{\bi m}]
2 a [2/m..]   [P4/mmm\ a] [P_{c}]
2 b       [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}]
2 c [2/m..]   [I4/mmm\ a] [0{\textstyle{1 \over 2}}0\ I]
2 d       [0{\textstyle{1 \over 2}{1 \over 2}}\ I]
2 e [\bar{4}..]   [P4/mmm\ a] [00{\textstyle{1 \over 4}}\ P_{c}]
2 f       [{\textstyle{1 \over 2}{1 \over 2}{1 \over 4}}\ P_{c}]
4 g 2..   [P4/mmm\ g] [P_{c}2z]
4 h       [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}2z]
4 i 2..   [I4/mmm\ e] [0{\textstyle{1 \over 2}}0\ I2z]
4 j m.. * [P4_{2}/m\ j] [\bar{4}..\ P_{c}2xy]
8 k 1 * [P4_{2}/m\ k] [\bar{4}..\ P_{c}2xy2z]
           
85 [{\bi P}{\bf 4}/{\bi n}]
2 a [\bar{4}..]   [P4/mmm\ a] C
2 b       [00{\textstyle{1 \over 2}}\ C]
2 c 4..   [P4/nmm\ c] [0{\textstyle{1 \over 2}}0\ ..2\ CI1z]
4 d [\bar{1}]   [P4/mmm\ a] [{\textstyle{1 \over 4}{1 \over 4}}0\ P_{ab}]
4 e       [{\textstyle{1 \over 4}{1 \over 4}{1 \over 2}}\ P_{ab}]
4 f 2..   [P4/mmm\ g] C2z
8 g 1 * [P4/n\ g] [\bar{1}\ C4xyz]
           
86 [{\bi P}{\bf 4}_{\bf 2}/{\bi n}]
2 a [\bar{4}..]   [I4/mmm\ a] I
2 b       [00{\textstyle{1 \over 2}}\ I]
4 c [\bar{1}]   [I4/mmm\ a] [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ F]
4 d       [{\textstyle{1 \over 4}{1 \over 4}{3 \over 4}}\ F]
4 e 2..   [P4/nmm\ c] [0{\textstyle{1 \over 2}}0\ (..2 \ CI1z)_{c}]
4 f 2..   [I4/mmm\ e] I2z
8 g 1 * [P4_{2}/n\ g] n.. I4xyz
           
87 [{\bi I}{\bf 4}/{\bi m}]
2 a [4/m..]   [I4/mmm\ a] I
2 b       [00{\textstyle{1 \over 2}}\ I]
4 c [2/m..]   [P4/mmm\ a] [0{\textstyle{1 \over 2}}0\ C_{c}]
4 d [\bar{4}..]   [P4/mmm\ a] [0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
4 e 4..   [I4/mmm\ e] I2z
8 f [\bar{1}]   [P4/mmm\ a] [{\textstyle{1 \over 4}{1 \over 4}{1 \over 4}}\ P_{2}]
8 g 2..   [P4/mmm\ g] [0{\textstyle{1 \over 2}}0\ C_{c}2z]
8 h m.. * [I4/m\ h] I4xy
16 i 1 * [I4/m\ i] I4xy2z
           
88 [{\bi I}{\bf 4}_{\bf 1}/{\bi a}]
4 a [\bar{4}..]   [I4_{1}/amd\ a] [^{v}D]
4 b       [00{\textstyle{1 \over 2}}\ ^{v}D]
8 c [\bar{1}]   [I4_{1}/amd\ c] [^{v}T]
8 d       [00{\textstyle{1 \over 2}}\ ^{v}T]
8 e 2..   [I4_{1}/amd\ e] [^{v}D2z]
16 f 1 * [I4_{1}/a\ f] [a..\ ^{v}D4xyz]
           
89 P422
1 a 422   [P4/mmm\ a] P
1 b       [00{\textstyle{1 \over 2}}\ P]
1 c       [{\textstyle{1 \over 2}{1 \over 2}}0\ P]
1 d       [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P]
2 e 222.   [P4/mmm\ a] [{\textstyle{1 \over 2}}00\ C]
2 f       [{\textstyle{1 \over 2}}0{\textstyle{1 \over 2}}\ C]
2 g 4..   [P4/mmm\ g] P2z
2 h       [{\textstyle{1 \over 2}{1 \over 2}}0\ P2z]
4 i 2..   [P4/mmm\ g] [0{\textstyle{1 \over 2}}0\ C2z]
4 j ..2   [P4/mmm\ j] P4xx
4 k       [00{\textstyle{1 \over 2}}\ P4xx]
4 l .2.   [P4/mmm\ l] P4x
4 m       [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ P4x]
4 n       [00{\textstyle{1 \over 2}}\ P4x]
4 o       [{\textstyle{1 \over 2}{1 \over 2}}0\ P4x]
8 p 1 * [P422\ p] P4x2yz
           
90 [{\bi P}{\bf 42}_{\bf 1}{\bf 2}]
2 a 2.22   [P4/mmm\ a] C
2 b       [00{\textstyle{1 \over 2}}\ C]
2 c 4..   [P4/nmm\ c] [0{\textstyle{1 \over 2}}0\ ..2\ CI1z]
4 d 2..   [P4/mmm\ g] C2z
4 e ..2   [P4/mbm\ g] .b. C2xx
4 f       [00{\textstyle{1 \over 2}}\ .b.\ C2xx]
8 g 1 * [P42 _{1}2\ g] [.2_{1}.\ C2xx2yz]
           
91 [{\bi P}{\bf 4}_{\bf 1}{\bf 22}]
4 a .2. * [P4_{3}22\ a] [00{\textstyle{3 \over 4}}\ 4_{1}..\ P_{cc}I_{c}1x]
4 b       [{\textstyle{1 \over 2}{1 \over 2}{3 \over 4}}\ 4_{1}..\ P_{cc}I_{c}1x]
4 c ..2 * [ P4_{3}22\ c] [00{\textstyle{3 \over 8}}\ 4_{1}..\ P_{cc}{^{v}D}1xx]
8 d 1 * [P4_{3}22\ d] [00{\textstyle{3 \over 4}}\ 4_{1}..\ P_{cc}I_{c}1x2yz]
           
92 [{\bi P}{\bf 4}_{\bf 1}{\bf 2}_{\bf 1}{\bf 2}]
4 a ..2 * [P4_{3}2_{1}2\ a] [4_{1}..\ I_{c}{^{v}D}1xx]
8 b 1 * [P4_{3}2_{1}2\ b] [4_{1}..\ I_{c}{^{v}D}1xx2yz]
           
93 [{\bi P}{\bf 4}_{\bf 2}{\bf 22}]
2 a 222.   [P4/mmm\ a] [P_{c}]
2 b       [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}]
2 c 222.   [I4/mmm\ a] [0{\textstyle{1 \over 2}}0\ I]
2 d       [0{\textstyle{1 \over 2}{1 \over 2}}\ I]
2 e 2.22   [P4/mmm\ a] [00{\textstyle{1 \over 4}}\ P_{c}]
2 f       [{\textstyle{1 \over 2}{1 \over 2}{1 \over 4}}\ P_{c}]
4 g 2..   [P4/mmm\ g] [P_{c}2z]
4 h       [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}2z]
4 i 2..   [I4/mmm\ e] [0{\textstyle{1 \over 2}}0\ I2z]
4 j .2.   [P4_{2}/mmc\ j] [..2\ P_{c}2x]
4 k       [{\textstyle{1 \over 2}{1 \over 2}{1 \over 2}}\ ..2\ P_{c}2x]
4 l       [00{\textstyle{1 \over 2}}\ ..2\ P_{c}2x]
4 m       [{\textstyle{1 \over 2}{1 \over 2}}0\ ..2\ P_{c}2x]
4 n ..2   [P4_{2}/mcm\ i] [00{\textstyle{1 \over 4}}\ .2.\ P_{c}2xx]
4 o       [00{\textstyle{3 \over 4}}\ .2.\ P_{c}2xx]
8 p 1 * [P4_{2}22\ p] [..2\ P_{c}2x2yz]
           
94 [{\bi P}{\bf 4}_{\bf 2}{\bf 2}_{\bf 1}{\bf 2}]
2 a 2.22   [I4/mmm\ a] I
2 b       [00{\textstyle{1 \over 2}}\ I]
4 c 2..   [I4/mmm\ e] I2z
4 d 2..   [P4/nmm\ c] [0{\textstyle{1 \over 2}}0\ (..2\ CI1z)_{c}]
4 e ..2   [P4_{2}/mnm\ f] .n. I2xx
4 f       [00{\textstyle{1 \over 2}}\ .n.\ I2xx]
8 g 1 * [P4_{2}2_{1}2\ g] [.2_{1}.\ I2xx2yz]
           
95 [{\bi P}{\bf 4}_{\bf 3}{\bf 22}]
4 a .2. * [P4_{3}22\ a] [00{\textstyle{1 \over 4}}\ 4_{3}..\ P_{cc}I_{c}1x]
4 b       [{\textstyle{1 \over 2}{1 \over 2}{1 \over 4}}\ 4_{3}..\ P_{cc}I_{c}1x]
4 c ..2 * [P4_{3}22\ c] [00{\textstyle{5 \over 8}}\ 4_{3}..\ P_{cc}{^{v}D}1xx]
8 d 1 * [P4_{3}22\ d] [00{\textstyle{1 \over 4}}\ 4_{3}..\ P_{cc}I_{c}1x2yz]
           
96 [{\bi P}{\bf 4}_{\bf 3}{\bf 2}_{\bf 1}{\bf 2}]
4 a ..2 * [P4_{3}2_{1}2\ a] [4_{3}..\ I_{c}{^{v}D}1xx]
8 b 1 * [P4_{3}2_{1}2\ b] [4_{3}..\ I_{c}{^{v}D}1xx2yz]
           
97 I422
2 a 422   [I4/mmm\ a] I
2 b       [00{\textstyle{1 \over 2}}\ I]
4 c 222.   [P4/mmm\ a] [0{\textstyle{1 \over 2}}0\ C_{c}]
4 d 2.22   [P4/mmm\ a] [0{\textstyle{1 \over 2}{1 \over 4}}\ C_{c}]
4 e 4..   [I4/mmm\ e] I2z
8 f 2..   [P4/mmm\ g] [0{\textstyle{1 \over 2}}0\ C_{c}2z]
8 g ..2   [I4/mmm\ h] I4xx
8 h .2.   [I4/mmm\ i] I4x
8 i       [00{\textstyle{1 \over 2}}\ I4x]
8 j ..2   [I4/mcm\ h] [0{\textstyle{1 \over 2}{1 \over 4}}\ .b.\ C_{c}2xx]
16 k 1 * [I422\ k] I4x2yz
           
98 [{\bi I}{\bf 4}_{\bf 1}{\bf 22}]
4 a 2.22   [I4_{1}/amd\ a] [^{v}D]
4 b       [00{\textstyle{1 \over 2}}\ ^{v}D]
8 c 2..   [I4_{1}/amd\ e] [^{v}D2z]
8 d ..2 * [I4_{1}22\ d] [.2.\ ^{v}D2xx]
8 e       [.2.\ ^{v}D2x\bar{x}]
8 f .2. * [I4_{1}22\ f] [..22\ ^{v}TC_{cc}1x]
16 g 1 * [I4_{1}22\ g] [.2.\ ^{v}D2xx2yz]
           
99 P4mm
1 a 4mm   [P4/mmm\ a] P[z]
1 b       [{\textstyle{1 \over 2}{1 \over 2}}0\ P\hbox{[}z\hbox{]}]
2 c 2mm.   [P4/mmm\ a] [{\textstyle{1 \over 2}}00\ C\hbox{[}z\hbox{]}]
4 d ..m   [P4/mmm\ j] P4xx[z]
4 e .m.   [P4/mmm\ l] P4x[z]
4 f       [{\textstyle{1 \over 2}{1 \over 2}}0\ P4x\hbox{[}z\hbox{]}]
8 g 1   [P4/mmm\ p] P4x2y[z]
           
100 P4bm
2 a 4..   [P4/mmm\ a] C[z]
2 b 2.mm   [P4/mmm\ a] [{\textstyle{1 \over 2}}00\ C\hbox{[}z\hbox{]}]
4 c ..m   [P4/mbm\ g] [0{\textstyle{1 \over 2}}0\ .b.\ C2xx\hbox{[}z\hbox{]}]
8 d 1   [P4/mbm\ i] ..m C4xy[z]
           
101 [{\bi P}{\bf 4}_{\bf 2}{\bi c}{\bi m}]
2 a 2.mm   [P4/mmm\ a] [P_{c}\hbox{[}z\hbox{]}]
2 b       [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}\hbox{[}z\hbox{]}]
4 c 2..   [P4/mmm\ a] [0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
4 d ..m   [P4_{2}/mcm\ i] [.2.\ P_{c}2xx\hbox{[}z\hbox{]}]
8 e 1   [P4_{2}/mcm\ n] [.2.\ P_{c}2xx2y\hbox{[}z\hbox{]}]
           
102 [{\bi P}{\bf 4}_{\bf 2}{\bi n}{\bi m}]
2 a 2.mm   [I4/mmm\ a] I[z]
4 b 2..   [P4/mmm\ a] [0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
4 c ..m   [P4_{2}/mnm\ f] .n. I2xx[z]
8 d 1   [P4_{2}/mnm\ i] .n. I2xx2y[z]
           
103 P4cc
2 a 4..   [P4/mmm\ a] [P_{c}\hbox{[}z\hbox{]}]
2 b       [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}\hbox{[}z\hbox{]}]
4 c 2..   [P4/mmm\ a] [0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
8 d 1   [P4/mcc\ m] [.c.\ P_{c}4xy\hbox{[}z\hbox{]}]
           
104 P4nc
2 a 4..   [I4/mmm\ a] I[z]
4 b 2..   [P4/mmm\ a] [0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
8 c 1   [P4/mnc\ h] ..2 I4xy[z]
           
105 [{\bi P}{\bf 4}_{\bf 2}{\bi m}{\bi c}]
2 a 2mm.   [P4/mmm\ a] [P_{c}\hbox{[}z\hbox{]}]
2 b       [{\textstyle{1 \over 2}{1 \over 2}}0\ P_{c}\hbox{[}z\hbox{]}]
2 c 2mm.   [I4/mmm\ a] [0{\textstyle{1 \over 2}}0\ I\hbox{[}z\hbox{]}]
4 d .m.   [P4_{2}/mmc\ j] [..2\ P_{c}2x\hbox{[}z\hbox{]}]
4 e       [{\textstyle{1 \over 2}{1 \over 2}}0\ ..2\ P_{c}2x\hbox{[}z\hbox{]}]
8 f 1   [P4_{2}/mmc\ q] [..2\ P_{c}2x2y\hbox{[}z\hbox{]}]
           
106 [{\bi P}{\bf 4}_{\bf 2}{\bi b}{\bi c}]
4 a 2..   [P4/mmm\ a] [C_{c}\hbox{[}z\hbox{]}]
4 b 2..   [P4/mmm\ a] [0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
8 c 1   [P4_{2}/mbc\ h] [.b2\ C_{c}2xy\hbox{[}z\hbox{]}]
           
107 I4mm
2 a 4mm   [I4/mmm\ a] I[z]
4 b 2mm.   [P4/mmm\ a] [0{\textstyle{1 \over 2}}0\ C_{c}\hbox{[}z\hbox{]}]
8 c ..m   [I4/mmm\ h] I4xx[z]
8 d .m.   [I4/mmm\ i] I4x[z]
16 e 1   [I4/mmm\ l] I4x2y[z]
           
108 I4cm
4 a 4..   [P4/mmm\ a] [C_{c}\hbox{[}z\hbox{]}]
4 b 2.mm   [P4/mmm\ a] [{\textstyle{1 \over 2}}00\ C_{c}\hbox{[}z\hbox{]}]
8 c ..m   [I4/mcm\ h] [{\textstyle{1 \over 2}}00\ .b.\ C_{c}2xx\hbox{[}z\hbox{]}]
16 d 1   [I4/mcm\ k] [..m\ C_{c}4xy\hbox{[}z\hbox{]}]
           
109 [{\bi I}{\bf 4}_{\bf 1}{\bi m}{\bi d}]
4 a 2mm.   [I4_{1}/amd\ a] [^{v}D\hbox{[}z\hbox{]}]
8 b .m. * [I4_{1}md\ b] [..d\ ^{v}D2x\hbox{[}z\hbox{]}]
16 c 1 * [I4_{1}md\ c] [..d\ ^{v}D2x2y\hbox{[}z\hbox{]}]