International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by M. I. Aroyo

International Tables for Crystallography (2016). Vol. A, ch. 3.4, p. 801

Table 3.4.3.2 

W. Fischera and E. Kocha*

aInstitut für Mineralogie, Petrologie und Kristallographie, Philipps-Universität, D-35032 Marburg, Germany
Correspondence e-mail:  kochelke@mailer.uni-marburg.de

Table 3.4.3.2| top | pdf |
Plane groups: assignment of Wyckoff positions to Wyckoff sets and to lattice complexes

Wyckoff positions of the same Wyckoff set can be recognized by their consecutive listing without repetition of the reference symbol. Characteristic Wyckoff sets are marked by asterisks.

1 p1
1 a 1   p2 a P[xy]
           
2 p2
1 a 2 * [p2\ a] P
1 b       [0{\textstyle{1 \over 2}}\ P]
1 c       [{\textstyle{1 \over 2}}0\ P]
1 d       [{\textstyle{1 \over 2}{1 \over 2}}\ P]
2 e 1 * [p2\ e] P2xy
           
3 pm
1 a .m.   p2mm a P[y]
1 b       [{\textstyle{1 \over 2}}0\ P\hbox{[}y\hbox{]}]
2 c 1   p2mm e P2x[y]
           
4 pg
2 a 1   p2mg c [2..\ P_{b}C1x\hbox{[}y\hbox{]}]
           
5 cm
2 a .m.   c2mm a C[y]
4 b 1   c2mm d C2x[y]
           
6 p2mm
1 a 2mm * [p2mm\ a] P
1 b       [0{\textstyle{1 \over 2}}\ P]
1 c       [{\textstyle{1 \over 2}}0\ P]
1 d       [{\textstyle{1 \over 2}{1 \over 2}}\ P]
2 e ..m * [p2mm\ e] P2x
2 f       [0{\textstyle{1 \over 2}}\ P2x]
2 g .m.     P2y
2 h       [{\textstyle{1 \over 2}}0\ P2y]
4 i 1 * [p2mm\ i] P2x2y
           
7 p2mg
2 a 2..   p2mm a [P_{a}]
2 b       [0{\textstyle{1 \over 2}}\ P_{a}]
2 c .m. * [p2mg\ c] [{\textstyle{1 \over 4}}0\ 2..\ P_{a}C1y]
4 d 1 * [p2mg\ d] [.m.\ P_{a}2xy]
           
8 p2gg
2 a 2..   c2mm a C
2 b       [{\textstyle{1 \over 2}}0\ C]
4 c 1 * [p2gg\ c] .g. C2xy
           
9 c2mm
2 a 2mm * [c2mm\ a] C
2 b       [0{\textstyle{1 \over 2}}\ C]
4 c 2..   p2mm a [{\textstyle{1 \over 4}{1 \over 4}}\ P_{ab}]
4 d ..m * [c2mm\ d] C2x
4 e .m.     C2y
8 f 1 * [c2mm\ f] C2x2y
           
10 p4
1 a 4..   p4mm a P
1 b       [{\textstyle{1 \over 2}{1 \over 2}}\ P]
2 c 2..   p4mm a [0{\textstyle{1 \over 2}}\ C]
4 d 1 * [p4\ d] P4xy
           
11 p4mm
1 a 4mm * [p4mm\ a] P
1 b       [{\textstyle{1 \over 2}{1 \over 2}}\ P]
2 c 2mm.   p4mm a [0{\textstyle{1 \over 2}}\ C]
4 d .m. * [p4mm\ d] P4x
4 e       [{\textstyle{1 \over 2}{1 \over 2}}\ P4x]
4 f ..m * [p4mm\ f] P4xx
8 g 1 * [p4mm\ g] P4x2y
           
12 p4gm
2 a 4..   p4mm a C
2 b 2.mm   p4mm a [0{\textstyle{1 \over 2}}\ C]
4 c ..m * [p4gm\ c] [0{\textstyle{1 \over 2}}\ .g.\ C2xx]
8 d 1 * [p4gm\ d] ..m C4xy
           
13 p3
1 a 3..   p6mm a P
1 b       [{\textstyle{1 \over 3}{2 \over 3}}\ P]
1 c       [{\textstyle{2 \over 3}{1 \over 3}}\ P]
3 d 1 * [p3\ d] P3xy
           
14 p3m1
1 a 3m.   p6mm a P
1 b       [{\textstyle{1 \over 3}{2 \over 3}}\ P]
1 c       [{\textstyle{2 \over 3}{1 \over 3}}\ P]
3 d .m. * [p3m1\ d] [P3x\bar{x}]
6 e 1 * [p3m1\ e] [P3x\bar{x}2y]
           
15 p31m
1 a 3.m   p6mm a P
2 b 3..   p6mm b G
3 c ..m * [p31m\ c] P3x
6 d 1 * [p31m\ d] P3x2y
           
16 p6
1 a 6..   p6mm a P
2 b 3..   p6mm b G
3 c 2..   p6mm c N
6 d 1 * [p6\ d] P6xy
           
17 p6mm
1 a 6mm * [p6mm\ a] P
2 b 3m. * [p6mm\ b] G
3 c 2mm * [p6mm\ c] N
6 d ..m * [p6mm\ d] P6x
6 e .m. * [p6mm\ e] [P6x\bar{x}]
12 f 1 * [p6mm\ f] P6x2y