International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by M. I. Aroyo

International Tables for Crystallography (2016). Vol. A, ch. 3.5, pp. 842-846

Table 3.5.2.5 

E. Koch,a W. Fischera and U. Müllerb

Table 3.5.2.5| top | pdf |
Euclidean and chirality-preserving Euclidean normalizers of the tetragonal, trigonal, hexagonal and cubic space groups

The symbols in parentheses following a space-group symbol refer to the location of the origin (`origin choice' in Chapter 2.3[link] ).

Space group [\cal G]Euclidean normalizer [\cal N_E(G)] and chirality-preserving normalizer [\cal N_{E^+}(G)]Additional generators of [\cal N_E(G)] and [\cal N_{E^+}(G)]Index of [\cal G] in [\cal N_E(G)] or [\cal N_{E^+}(G)]
No.Hermann–Mauguin symbolSymbolBasis vectorsTranslationsInversion through a centre atFurther generators
75 [P4] [P^14/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,t] [0,0,0] [y,x,z] [(2\cdot\infty )\cdot 2\cdot 2]
    [{\cal N_{E^+}(G)}\!\!:\; P^1422] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,t] [/] [y,x,\bar z] [(2\cdot\infty )\cdot 2]
76 [P4_1] [P^1422] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,t] [/] [y,x,\bar z] [(2\cdot\infty )\cdot 2]
77 [P4_2] [P^14/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,t] [0,0,0] [y,x,z] [(2\cdot\infty )\cdot 2\cdot 2]
    [{\cal N_{E^+}(G)}\!\!:\; P^1422] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,t] [/] [y,x,\bar z] [(2\cdot\infty )\cdot 2]
78 [P4_3] [P^1422] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,t] [/] [y,x,\bar z] [(2\cdot\infty )\cdot 2]
79 [I4] [P^14/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [0,0,t] [0,0,0] [y,x,z] [\infty\cdot 2\cdot 2]
    [{\cal N_{E^+}(G)}\!\!:\; P^1422] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [0,0,t] [/] [y,x,\bar z] [\infty\cdot 2]
80 [I4_1] [P^14/nbm] [ (\bar42m)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [0,0,t] [{\textstyle{1\over 4}},0,0] [y,x,\bar z] [\infty\cdot 2\cdot 2]
    [{\cal N_{E^+}(G)}\!\!:\; P^1422] [(222)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [0,0,t] [/] [y,x,\bar z] [\infty\cdot 2]
81 [P\bar4] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0] [y,x,z] [4\cdot 2\cdot 2]
82 [I\bar4] [I4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},0,{\textstyle{1\over 4}}] [0,0,0] [y,x,z] [4\cdot 2\cdot 2]
83 [P4/m] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]   [y,x,z] [4\cdot 1\cdot 2]
84 [P4_2/m] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]   [y,x,z] [4\cdot 1\cdot 2]
85 [P4/n] [(\bar4)] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]   [y,x,z] [4\cdot 1\cdot 2]
85 [P4/n] [(\bar1)] [P4/mmm] [(mmm)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]   [y,x,z] [4\cdot 1\cdot 2]
86 [P4_2/n] [(\bar4)] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]   [y,x,z] [4\cdot 1\cdot 2]
86 [P4_2/n] [(\bar1)] [P4/mmm] [(mmm)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]   [y,x,z] [4\cdot 1\cdot 2]
87 [I4/m] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]   [y,x,z] [2\cdot 1\cdot 2]
88 [I4_1/a] [(\bar4)] [P4_2/nnm] [(\bar42m)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]   [y,x,\bar z] [2\cdot 1\cdot 2]
88 [I4_1/a] [(\bar1)] [P4_2/nnm] [(2/m)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]   [y+{\textstyle{1\over 4}},x+{\textstyle{1\over 4}},z+{\textstyle{1\over 4}}] [2\cdot 1\cdot 2]
89 [P422] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0]   [4\cdot 2\cdot 1]
    [{\cal N_{E^+}(G)}\!\!:\; P422] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [/]   [4\cdot 1]
90 [P42_12] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0]   [4\cdot 2\cdot 1]
    [{\cal N_{E^+}(G)}\!\!:\; P422] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [/]   [4\cdot 1]
91 [P4_122] [P4_222] (222 at [4_212]) [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [/]   [4\cdot 1]
92 [P4_12_12] [P4_222] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [/]   [4\cdot 1]
93 [P4_222] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0]   [4\cdot 2\cdot 1]
    [{\cal N_{E^+}(G)}\!\!:\; P422] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [/]   [4\cdot 1]
94 [P4_22_12] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0]   [4\cdot 2\cdot 1]
    [{\cal N_{E^+}(G)}\!\!:\; P422] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [/]   [4\cdot 1]
95 [P4_322] [P4_222] (222 at [4_212]) [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [/]   [4\cdot 1]
96 [P4_32_12] [P4_222] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [/]   [4\cdot 1]
97 [I422] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [0,0,0]   [2\cdot 2\cdot 1]
    [{\cal N_{E^+}(G)}\!\!:\;P422] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [/]   [2\cdot 1]
98 [I4_122] [P4_2/nnm] [(\bar42m)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [{\textstyle{1\over 4}},0,{\textstyle{1\over 8}}]   [2\cdot2\cdot 1]
    [{\cal N_{E^+}(G)}\!\!:\;P4_222] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [/]   [2\cdot 1]
99 [P4mm] [P^14/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,t] [0,0,0]   [(2\cdot\infty )\cdot 2\cdot 1]
100 [P4bm] [P^14/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,t] [0,0,0]   [(2\cdot\infty )\cdot 2\cdot 1]
101 [P4_2cm] [P^14/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,t] [0,0,0]   [(2\cdot\infty )\cdot 2\cdot 1]
102 [P4_2nm] [P^14/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,t] [0,0,0]   [(2\cdot\infty )\cdot 2\cdot 1]
103 [P4cc] [P^14/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,t] [0,0,0]   [(2\cdot\infty )\cdot 2\cdot 1]
104 [P4nc] [P^14/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,t] [0,0,0]   [(2\cdot\infty )\cdot 2\cdot 1]
105 [P4_2mc] [P^14/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,t] [0,0,0]   [(2\cdot\infty )\cdot 2\cdot 1]
106 [P4_2bc] [P^14/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,t] [0,0,0]   [(2\cdot\infty )\cdot 2\cdot 1]
107 [I4mm] [P^14/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [0,0,t] [0,0,0]   [\infty \cdot 2\cdot 1]
108 [I4cm] [P^14/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [0,0,t] [0,0,0]   [\infty \cdot 2\cdot 1]
109 [I4_1md] [P^14/nbm] [(\bar42m)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [0,0,t] [{\textstyle{1\over 4}},0,0]   [\infty \cdot 2\cdot 1]
110 [I4_1cd] [P^14/nbm] [(\bar42m)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,\varepsilon{\bf c}] [0,0,t] [{\textstyle{1\over 4}},0,0]   [\infty \cdot 2\cdot 1]
111 [P\bar42m] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0]   [4\cdot 2\cdot 1]
112 [P\bar42c] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0]   [4\cdot 2\cdot 1]
113 [P\bar42_1m] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0]   [4\cdot 2\cdot 1]
114 [P\bar42_1c] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0]   [4\cdot 2\cdot 1]
115 [P\bar4m2] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0]   [4\cdot 2\cdot 1]
116 [P\bar4c2] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0]   [4\cdot 2\cdot 1]
117 [P\bar4b2] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0]   [4\cdot 2\cdot 1]
118 [P\bar4n2] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0]   [4\cdot 2\cdot 1]
119 [I\bar4m2] [I4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},0,{\textstyle{1\over 4}}] [0,0,0]   [4\cdot 2\cdot 1]
120 [I\bar4c2] [I4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},0,{\textstyle{1\over 4}}] [0,0,0]   [4\cdot 2\cdot 1]
121 [I\bar42m] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [0,0,0]   [2\cdot 2\cdot 1]
122 [I\bar42d] [P4_2/nnm] [(\bar42m)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [{\textstyle{1\over 4}},0,{\textstyle{1\over 8}}]   [2\cdot 2\cdot 1]
123 [P4/mmm] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
124 [P4/mcc] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
125 [P4/nbm] [(422)] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
125 [P4/nbm] [(2/m)] [P4/mmm] [(mmm)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
126 [P4/nnc] [(422)] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
126 [P4/nnc] [(\bar1)] [P4/mmm] [(mmm)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
127 [P4/mbm] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
128 [P4/mnc] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
129 [P4/nmm] [(\bar4m2)] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
129 [P4/nmm] [(2/m)] [P4/mmm] [(mmm)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
130 [P4/ncc] [(\bar4)] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
130 [P4/ncc] [(\bar1)] [P4/mmm] [(mmm)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
131 [P4_2/mmc] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
132 [P4_2/mcm] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
133 [P4_2/nbc] [(\bar4)] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
133 [P4_2/nbc] [(\bar1)] [P4/mmm] [(mmm) ] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
134 [P4_2/nnm] [(\bar42m)] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
134 [P4_2/nnm] [(2/m)] [P4/mmm] [(mmm)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
135 [P4_2/mbc] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
136 [P4_2/mnm] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
137 [P4_2/nmc] [(\bar4m2)] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
137 [P4_2/nmc] [(\bar1)] [P4/mmm] [(mmm)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
138 [P4_2/ncm] [(\bar4)] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
138 [P4_2/ncm] [(2/m)] [P4/mmm] [(mmm)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},0;\ 0,0,{\textstyle{1\over 2}}]     [4\cdot 1\cdot 1]
139 [I4/mmm] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
140 [I4/mcm] [P4/mmm] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
141 [I4_1/amd] [(\bar4m2)] [P4_2/nnm] [(\bar42m)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
141 [I4_1/amd] [(2/m)] [P4_2/nnm] [(2/m)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
142 [I4_1/acd] [(\bar4)] [P4_2/nnm] [(\bar42m)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
142 [I4_1/acd] [(\bar1)] [P4_2/nnm] [(2/m)] [{\textstyle{1\over 2}}({\bf a}-{\bf b}),\,{\textstyle{1\over 2}}({\bf a}+{\bf b}),\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
143 [P3] [P^16/mmm] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,\varepsilon{\bf c}] [{\textstyle{2\over 3}},{\textstyle{1\over 3}},0;\ 0,0,t] [0,0,0] [\bar x,\bar y,z;\ y,x,z] [(3\cdot\infty )\cdot 2\cdot 4]
    [{\cal N_{E^+}(G)}\!\!:\; P^1622] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,\varepsilon{\bf c}] [{\textstyle{2\over 3}},{\textstyle{1\over 3}},0;\ 0,0,t] [/] [\bar x,\bar y,z;\ y,x,\bar z] [(3\cdot\infty )\cdot 4]
144 [P3_1] [P^1622] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,\varepsilon{\bf c}] [{\textstyle{2\over 3}},{\textstyle{1\over 3}},0;\ 0,0,t] [/] [\bar x,\bar y,z;\ y,x,\bar z] [(3\cdot\infty )\cdot 4]
145 [P3_2] [P^1622] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,\varepsilon{\bf c}] [{\textstyle{2\over 3}},{\textstyle{1\over 3}},0;\ 0,0,t] [/] [\bar x,\bar y,z;\ y,x,\bar z] [(3\cdot\infty )\cdot 4]
146 [R3] (hexag.) [P^1\bar31m] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,\varepsilon{\bf c}] [0,0,t] [0,0,0] [\bar y,\bar x,z] [\infty\cdot 2\cdot 2]
    [{\cal N_{E^+}(G)}\!\!:\; P^1312] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,\varepsilon{\bf c}] [0,0,t] [/] [y,x,\bar z] [\infty\cdot 2]
146 [R3] (rhomboh.) [P^1\bar31m] [{\textstyle{2\over 3}}{\bf a}-{\textstyle{1\over 3}}{\bf b}-{\textstyle{1\over 3}}{\bf c},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{2\over 3}}{\bf b}-{\textstyle{1\over 3}}{\bf c},] [\varepsilon({\bf a}+{\bf b}+{\bf c})] [r,r,r] [0,0,0] [y,x,z] [\infty\cdot 2\cdot 2]
    [{\cal N_{E^+}(G)}\!\!:\; P^1312] [{\textstyle{2\over 3}}{\bf a}-{\textstyle{1\over 3}}{\bf b}-{\textstyle{1\over 3}}{\bf c},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{2\over 3}}{\bf b}-{\textstyle{1\over 3}}{\bf c},] [\varepsilon({\bf a}+{\bf b}+{\bf c})] [r,r,r] [/] [\bar y,\bar x,\bar z] [\infty\cdot 2]
147 [P\bar3] [P6/mmm] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]   [\bar x,\bar y,z;\ y,x,z] [2\cdot 1\cdot 4]
148 [R\bar3] (hexag.) [R\bar3m] (hexag.) [-{\bf a},\,-{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]   [\bar y,\bar x,z] [2\cdot 1\cdot 2]
148 [R\bar3] (rhomboh.) [R\bar3m] (rhomboh.) [{\textstyle{1\over 2}}(-{\bf a}+{\bf b}+{\bf c}),\,{\textstyle{1\over 2}}({\bf a}-{\bf b}+{\bf c}),] [{\textstyle{1\over 2}}({\bf a}+{\bf b}-{\bf c})] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]   [y,x,z] [2\cdot 1\cdot 2]
149 [P312] [P6/mmm] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{2\over 3}},{\textstyle{1\over 3}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0] [\bar x,\bar y,z] [6\cdot 2\cdot 2]
    [{\cal N_{E^+}(G)}\!\!:\;P622] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{2\over 3}},{\textstyle{1\over 3}},0;\ 0,0,{\textstyle{1\over 2}}] [/] [\bar x,\bar y,z] [6\cdot 2]
150 [P321] [P6/mmm] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [0,0,0] [\bar x,\bar y,z] [2\cdot 2\cdot 2]
    [{\cal N_{E^+}(G)}\!\!:\;P622] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [/] [\bar x,\bar y,z] [2\cdot 2]
151 [P3_112] [P6_222] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{2\over 3}},{\textstyle{1\over 3}},0;\ 0,0,{\textstyle{1\over 2}}] [/] [\bar x,\bar y,z] [6\cdot 2]
152 [P3_121] [P6_222] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\bf a}+{\bf b},\,-{\bf a},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [/] [\bar x,\bar y,z] [2\cdot 2]
153 [P3_212] [P6_422] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{2\over 3}},{\textstyle{1\over 3}},0;\ 0,0,{\textstyle{1\over 2}}] [/] [\bar x,\bar y,z] [6\cdot 2]
154 [P3_221] [P6_422] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\bf a}+{\bf b},\,-{\bf a},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [/] [\bar x,\bar y,z] [2\cdot 2]
155 [R32] (hexag.) [R\bar3m] (hexag.) [-{\bf a},\,-{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [0,0,0]   [2\cdot 2\cdot 1]
    [{\cal N_{E^+}(G)}\!\!:\; R32] (hexag.) [-{\bf a},\,-{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [/]   [2\cdot 1]
155 [R32] (rhomboh.) [R\bar3m] (rhomboh.) [{\textstyle{1\over 2}}(-{\bf a}+{\bf b}+{\bf c}),\,{\textstyle{1\over 2}}({\bf a}-{\bf b}+{\bf c}),] [{\textstyle{1\over 2}}({\bf a}+{\bf b}-{\bf c})] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [0,0,0]   [2\cdot 2\cdot 1]
    [{\cal N_{E^+}(G)}\!\!:\; R32] (rhomboh.) [{\textstyle{1\over 2}}(-{\bf a}+{\bf b}+{\bf c}),\,{\textstyle{1\over 2}}({\bf a}-{\bf b}+{\bf c}),] [{\textstyle{1\over 2}}({\bf a}+{\bf b}-{\bf c})] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [/]   [2\cdot 1]
156 [P3m1] [P^16/mmm] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,\varepsilon{\bf c}] [{\textstyle{2\over 3}},{\textstyle{1\over 3}},0;\ 0,0,t] [0,0,0] [\bar x,\bar y,z] [(3\cdot\infty )\cdot 2\cdot 2]
157 [P31m] [P^16/mmm] [{\bf a},\,{\bf b},\,\varepsilon{\bf c}] [0,0,t] [0,0,0] [\bar x,\bar y,z] [\infty\cdot 2\cdot 2]
158 [P3c1] [P^16/mmm] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,\varepsilon{\bf c}] [{\textstyle{2\over 3}},{\textstyle{1\over 3}},0;\ 0,0,t] [0,0,0] [\bar x,\bar y,z] [(3\cdot\infty )\cdot 2\cdot 2]
159 [P31c] [P^16/mmm] [{\bf a},\,{\bf b},\,\varepsilon{\bf c}] [0,0,t] [0,0,0] [\bar x,\bar y,z] [\infty\cdot 2\cdot 2]
160 [R3m] (hexag.) [P^1\bar31m] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,\varepsilon{\bf c}] [0,0,t] [0,0,0]   [\infty\cdot 2\cdot 1]
160 [R3m] (rhomboh.) [P^1\bar31m ] [{\textstyle{2\over 3}}{\bf a}-{\textstyle{1\over 3}}{\bf b}-{\textstyle{1\over 3}}{\bf c},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{2\over 3}}{\bf b}-{\textstyle{1\over 3}}{\bf c},] [\varepsilon({\bf a}+{\bf b}+{\bf c})] [r,r,r] [0,0,0]   [\infty\cdot 2\cdot 1]
161 [R3c] (hexag.) [P^1\bar31m] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,\varepsilon{\bf c}] [0,0,t] [0,0,0]   [\infty\cdot 2\cdot 1]
161 [R3c] (rhomboh.) [P^1\bar31m] [{\textstyle{2\over 3}}{\bf a}-{\textstyle{1\over 3}}{\bf b}-{\textstyle{1\over 3}}{\bf c},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{2\over 3}}{\bf b}-{\textstyle{1\over 3}}{\bf c},] [\varepsilon({\bf a}+{\bf b}+{\bf c})] [r,r,r] [0,0,0]   [\infty\cdot 2\cdot 1]
162 [P\bar31m] [P6/mmm] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]   [\bar x,\bar y,z] [2\cdot 1\cdot 2]
163 [P\bar31c] [P6/mmm] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]   [\bar x,\bar y,z] [2\cdot 1\cdot 2]
164 [P\bar3m1] [P6/mmm] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]   [\bar x,\bar y,z] [2\cdot 1\cdot 2]
165 [P\bar3c1] [P6/mmm] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]   [\bar x,\bar y,z] [2\cdot 1\cdot 2]
166 [R\bar3m] (hexag.) [R\bar3m] (hexag.) [-{\bf a},\,-{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
166 [R\bar3m] (rhomboh.) [R\bar3m] (rhomboh.) [{\textstyle{1\over 2}}(-{\bf a}+{\bf b}+{\bf c}),\,{\textstyle{1\over 2}}({\bf a}-{\bf b}+{\bf c}),] [{\textstyle{1\over 2}}({\bf a}+{\bf b}-{\bf c})] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
167 [R\bar3c] (hexag.) [R\bar3m] (hexag.) [-{\bf a},\,-{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
167 [R\bar3c] (rhomboh.) [R\bar3m] (rhomboh.) [{\textstyle{1\over 2}}(-{\bf a}+{\bf b}+{\bf c}),\,{\textstyle{1\over 2}}({\bf a}-{\bf b}+{\bf c}),] [{\textstyle{1\over 2}}({\bf a}+{\bf b}-{\bf c})] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
168 [P6] [P^16/mmm] [{\bf a},\,{\bf b},\,\varepsilon{\bf c}] [0,0,t] [0,0,0] [y,x,z] [\infty\cdot 2\cdot 2]
    [{\cal N_{E^+}(G)}\!\!:\; P^1622] [{\bf a},\,{\bf b},\,\varepsilon{\bf c}] [0,0,t] [/] [y,x,\bar z] [\infty\cdot 2]
169 [P6_1] [P^1622] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\bf a},\,{\bf b},\,\varepsilon{\bf c}] [0,0,t] [/] [y,x,\bar z] [\infty\cdot 2]
170 [P6_5] [P^1622] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\bf a},\,{\bf b},\,\varepsilon{\bf c}] [0,0,t] [/] [y,x,\bar z] [\infty\cdot 2]
171 [P6_2] [P^1622] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\bf a},\,{\bf b},\,\varepsilon{\bf c}] [0,0,t] [/] [y,x,\bar z] [\infty\cdot 2]
172 [P6_4] [P^1622] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\bf a},\,{\bf b},\,\varepsilon{\bf c}] [0,0,t] [/] [y,x,\bar z] [\infty\cdot 2]
173 [P6_3] [P^16/mmm ] [{\bf a},\,{\bf b},\,\varepsilon{\bf c}] [0,0,t] [0,0,0] [y,x,z] [\infty\cdot 2\cdot 2]
    [{\cal N_{E^+}(G)}\!\!:\; P^1622] [{\bf a},\,{\bf b},\,\varepsilon{\bf c}] [0,0,t] [/] [y,x,\bar z] [\infty\cdot 2]
174 [P\bar6] [P6/mmm] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{2\over 3}},{\textstyle{1\over 3}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0] [y,x,z] [6\cdot 2\cdot 2]
175 [P6/m ] [P6/mmm] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]   [y,x,z] [2\cdot 1\cdot 2]
176 [P6_3/m ] [P6/mmm] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]   [y,x,z] [2\cdot 1\cdot 2]
177 [P622 ] [P6/mmm] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [0,0,0]   [2\cdot 2\cdot 1]
    [{\cal N_{E^+}(G)}\!\!:\; P622] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [/]   [2\cdot 1]
178 [P6_122 ] [P6_222] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [/]   [2\cdot 1]
179 [P6_522 ] [P6_422] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [/]   [2\cdot 1]
180 [P6_222 ] [P6_422] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [/]   [2\cdot 1]
181 [P6_422 ] [P6_222] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [/]   [2\cdot 1]
182 [P6_322 ] [P6/mmm ] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [0,0,0]   [2\cdot 2\cdot 1]
    [{\cal N_{E^+}(G)}\!\!:\; P622] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [/]   [2\cdot 1]
183 [P6mm] [P^16/mmm] [{\bf a},\,{\bf b},\,\varepsilon{\bf c}] [0,0,t] [0,0,0]   [\infty\cdot 2\cdot 1]
184 [P6cc] [P^16/mmm] [{\bf a},\,{\bf b},\,\varepsilon{\bf c}] [0,0,t] [0,0,0]   [\infty\cdot 2\cdot 1]
185 [P6_3cm] [P^16/mmm] [{\bf a},\,{\bf b},\,\varepsilon{\bf c}] [0,0,t] [0,0,0]   [\infty\cdot 2\cdot 1]
186 [P6_3mc] [P^16/mmm] [{\bf a},\,{\bf b},\,\varepsilon{\bf c}] [0,0,t] [0,0,0]   [\infty\cdot 2\cdot 1]
187 [P\bar6m2] [P6/mmm] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{2\over 3}},{\textstyle{1\over 3}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0]   [6\cdot 2\cdot 1]
188 [P\bar6c2] [P6/mmm] [{\textstyle{2\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,-{\textstyle{1\over 3}}{\bf a}+{\textstyle{1\over 3}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{2\over 3}},{\textstyle{1\over 3}},0;\ 0,0,{\textstyle{1\over 2}}] [0,0,0]   [6\cdot 2\cdot 1]
189 [P\bar62m] [P6/mmm] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [0,0,0]   [2\cdot 2\cdot 1]
190 [P\bar62c] [P6/mmm] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}] [0,0,0]   [2\cdot 2\cdot 1]
191 [P6/mmm ] [P6/mmm] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
192 [P6/mcc ] [P6/mmm] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
193 [P6_3/mcm ] [P6/mmm] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
194 [P6_3/mmc ] [P6/mmm] [{\bf a},\,{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [0,0,{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
195 [P23 ] [Im\bar3m] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [0,0,0] [y,x,z] [2\cdot 2\cdot 2]
    [{\cal N_{E^+}(G)}\!\!:\; I432] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [/] [y,x,\bar z] [2\cdot 2]
196 [F23 ] [Im\bar3m] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 4}},{\textstyle{1\over 4}},{\textstyle{1\over 4}}] [0,0,0] [y,x,z] [4\cdot 2\cdot 2]
    [{\cal N_{E^+}(G)}\!\!:\; I432] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 4}},{\textstyle{1\over 4}},{\textstyle{1\over 4}}] [/] [y,x,\bar z] [4\cdot 2]
197 [I23 ] [Im\bar3m] [{\bf a},\,{\bf b},\,{\bf c}]   [0,0,0] [y,x,z] [1\cdot 2\cdot 2]
    [{\cal N_{E^+}(G)}\!\!:\; I432] [{\bf a},\,{\bf b},\,{\bf c}]   [/] [y,x,\bar z] [1\cdot 2]
198 [P2_13 ] [Ia\bar3d] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [0,0,0] [y+{\textstyle{1\over 4}},x+{\textstyle{1\over 4}},z+{\textstyle{1\over 4}}] [2\cdot 2\cdot 2]
    [{\cal N_{E^+}(G)}\!\!:\;I4_132] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [/] [\bar y+{\textstyle{1\over 4}},\bar x+{\textstyle{1\over 4}},\bar z+{\textstyle{1\over 4}}] [2\cdot 2]
199 [I2_13 ] [Ia\bar3d] [{\bf a},\,{\bf b},\,{\bf c}]   [0,0,0] [y+{\textstyle{1\over 4}},x+{\textstyle{1\over 4}},z+{\textstyle{1\over 4}}] [1\cdot 2\cdot 2]
    [{\cal N_{E^+}(G)}\!\!:\;I4_132] [{\bf a},\,{\bf b},\,{\bf c}]   [/] [\bar y+{\textstyle{1\over 4}},\bar x+{\textstyle{1\over 4}},\bar z+{\textstyle{1\over 4}}] [1\cdot 2]
200 [Pm\bar3 ] [Im\bar3m] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]   [y,x,z] [2\cdot 1\cdot 2]
201 [Pn\bar3] [(23)] [Im\bar3m] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]   [y,x,z] [2\cdot 1\cdot 2]
201 [Pn\bar3] [(\bar3)] [Im\bar3m] [(\bar3m)] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]   [y,x,z] [2\cdot 1\cdot 2]
202 [Fm\bar3 ] [Pm\bar3m] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]   [y,x,z] [2\cdot 1\cdot 2]
203 [Fd\bar3] [(23)] [Pn\bar3m] [(\bar43m)] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]   [y,x,z] [2\cdot 1\cdot 2]
203 [Fd\bar3] [(\bar3)] [Pn\bar3m] [(\bar3m)] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]   [y,x,z] [2\cdot 1\cdot 2]
204 [Im\bar3 ] [Im\bar3m] [{\bf a},\,{\bf b},\,{\bf c}]     [y,x,z] [1\cdot 1\cdot 2]
205 [Pa\bar3 ] [Ia\bar3] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
206 [Ia\bar3 ] [Ia\bar3d] [{\bf a},\,{\bf b},\,{\bf c}]     [y+{\textstyle{1\over 4}},x+{\textstyle{1\over 4}},z+{\textstyle{1\over 4}}] [1\cdot 1\cdot 2]
207 [P432 ] [Im\bar3m] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [0,0,0]   [2\cdot 2\cdot 1]
    [{\cal N_{E^+}(G)}\!\!:\; I432] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [/]   [2\cdot 1]
208 [P4_232 ] [Im\bar3m] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [0,0,0]   [2\cdot 2\cdot 1]
    [{\cal N_{E^+}(G)}\!\!:\; I432] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [/]   [2\cdot 1]
209 [F432 ] [Pm\bar3m] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [0,0,0]   [2\cdot 2\cdot 1]
    [{\cal N_{E^+}(G)}\!\!:\; P432] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [/]   [2\cdot 1]
210 [F4_132 ] [Pn\bar3m] [(\bar43m)] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [{\textstyle{1\over 8}},{\textstyle{1\over 8}},{\textstyle{1\over 8}}]   [2\cdot 2\cdot 1]
    [{\cal N_{E^+}(G)}\!\!:\; P4_232] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [/]   [2\cdot 1]
211 [I432 ] [Im\bar3m] [{\bf a},\,{\bf b},\,{\bf c}]   [0,0,0]   [1\cdot 2\cdot 1]
    [{\cal N_{E^+}(G)}\!\!:\; I432] [{\bf a},\,{\bf b},\,{\bf c}]   [/]   [1\cdot 1]
212 [P4_332 ] [I4_132] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [/]   [2\cdot 1]
213 [P4_132 ] [I4_132] [[\equiv {\cal N}_{{\cal E}^+}({\cal G})]] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [/]   [2\cdot 1]
214 [I4_132 ] [Ia\bar3d] [{\bf a},\,{\bf b},\,{\bf c}]   [0,0,0]   [1\cdot 2\cdot 1]
    [{\cal N_{E^+}(G)}\!\!:\; I4_132] [{\bf a},\,{\bf b},\,{\bf c}]   [/]   [1\cdot 1]
215 [P\bar43m ] [Im\bar3m] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [0,0,0]   [2\cdot 2\cdot 1]
216 [F\bar43m ] [Im\bar3m] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 4}},{\textstyle{1\over 4}},{\textstyle{1\over 4}}] [0,0,0]   [4\cdot 2\cdot 1]
217 [I\bar43m ] [Im\bar3m] [{\bf a},\,{\bf b},\,{\bf c}]   [0,0,0]   [1\cdot 2\cdot 1]
218 [P\bar43n ] [Im\bar3m] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}] [0,0,0]   [2\cdot 2\cdot 1]
219 [F\bar43c ] [Im\bar3m] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 4}},{\textstyle{1\over 4}},{\textstyle{1\over 4}}] [0,0,0]   [4\cdot 2\cdot 1]
220 [I\bar43d ] [Ia\bar3d] [{\bf a},\,{\bf b},\,{\bf c}]   [0,0,0]   [1\cdot 2\cdot 1]
221 [Pm\bar3m ] [Im\bar3m] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
222 [Pn\bar3n] [(432)] [Im\bar3m] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
222 [Pn\bar3n] [(\bar3)] [Im\bar3m] [(\bar3m)] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
223 [Pm\bar3n ] [Im\bar3m] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
224 [Pn\bar3m] [(\bar43m)] [Im\bar3m] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
224 [Pn\bar3m] [(\bar3m)] [Im\bar3m] [(\bar3m)] [{\bf a},\,{\bf b},\,{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
225 [Fm\bar3m ] [Pm\bar3m] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
226 [Fm\bar3c ] [Pm\bar3m] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
227 [Fd\bar3m] [(\bar43m)] [Pn\bar3m] [(\bar43m)] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
227 [Fd\bar3m] [(\bar3m)] [Pn\bar3m] [(\bar3m)] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
228 [Fd\bar3c] [(23)] [Pn\bar3m] [(\bar43m)] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
228 [Fd\bar3c] [(\bar3)] [Pn\bar3m] [(\bar3m)] [{\textstyle{1\over 2}}{\bf a},\,{\textstyle{1\over 2}}{\bf b},\,{\textstyle{1\over 2}}{\bf c}] [{\textstyle{1\over 2}},{\textstyle{1\over 2}},{\textstyle{1\over 2}}]     [2\cdot 1\cdot 1]
229 [Im\bar3m ] [Im\bar3m] [{\bf a},\,{\bf b},\,{\bf c}]       [1\cdot 1\cdot 1]
230 [Ia\bar3d ] [Ia\bar3d] [{\bf a},\,{\bf b},\,{\bf c}]       [1\cdot 1\cdot 1]