International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by M. I. Aroyo

International Tables for Crystallography (2016). Vol. A, ch. 3.6, p. 853

Table 3.6.2.1 

D. B. Litvina*

aDepartment of Physics, The Eberly College of Science, Penn State – Berks Campus, The Pennsylvania State University, PO Box 7009, Reading, PA 19610–6009, USA
Correspondence e-mail: u3c@psu.edu

Table 3.6.2.1| top | pdf |
Numbers of types of groups in the reduced magnetic superfamilies of one-, two- and three-dimensional crystallographic point groups, subperiodic groups and space groups

Type of group[\cal F][\ispecialfonts{\cal F}\!{\sfi 1}'][{\cal F}({\cal D})]Total
One-dimensional magnetic point groups 2 2 1 5
Two-dimensional magnetic point groups 10 10 11 31
Three-dimensional magnetic point groups 32 32 58 122
Magnetic frieze groups 7 7 17 31
Magnetic rod groups 75 75 244 394
Magnetic layer groups 80 80 368 528
One-dimensional magnetic space groups 2 2 3 7
Two-dimensional magnetic space groups 17 17 46 80
Three-dimensional magnetic space groups 230 230 1191 1651