
1.1. Reciprocal space in crystallography

BY U. SHMUELI

1.1.1. Introduction

The purpose of this chapter is to provide an introduction to several
aspects of reciprocal space, which are of general importance in
crystallography and which appear in the various chapters and
sections to follow. We first summarize the basic definitions and
briefly inspect some fundamental aspects of crystallography, while
recalling that they can be usefully and simply discussed in terms of
the concept of the reciprocal lattice. This introductory section is
followed by a summary of the basic relationships between the direct
and associated reciprocal lattices. We then introduce the elements
of tensor-algebraic formulation of such dual relationships, with
emphasis on those that are important in many applications of
reciprocal space to crystallographic algorithms. We proceed with a
section that demonstrates the role of mutually reciprocal bases in
transformations of coordinates and conclude with a brief outline of
some important analytical aspects of reciprocal space, most of
which are further developed in other parts of this volume.

1.1.2. Reciprocal lattice in crystallography

The notion of mutually reciprocal triads of vectors dates back to the
introduction of vector calculus by J. Willard Gibbs in the 1880s (e.g.
Wilson, 1901). This concept appeared to be useful in the early
interpretations of diffraction from single crystals (Ewald, 1913;
Laue, 1914) and its first detailed exposition and the recognition of
its importance in crystallography can be found in Ewald’s (1921)
article. The following free translation of Ewald’s (1921) introduc-
tion, presented in a somewhat different notation, may serve the
purpose of this section:

To the set of ai, there corresponds in the vector calculus a set of
‘reciprocal vectors’ bi, which are defined (by Gibbs) by the following
properties:

ai � bk � 0 �for i �� k� �1�1�2�1�
and

ai � bi � 1, �1�1�2�2�
where i and k may each equal 1, 2 or 3. The first equation, (1.1.2.1), says
that each vector bk is perpendicular to two vectors ai, as follows from
the vanishing scalar products. Equation (1.1.2.2) provides the norm of
the vector bi: the length of this vector must be chosen such that the
projection of bi on the direction of ai has the length 1�ai, where ai is the
magnitude of the vector ai. . ..

The consequences of equations (1.1.2.1) and (1.1.2.2) were
elaborated by Ewald (1921) and are very well documented in the
subsequent literature, crystallographic as well as other.

As is well known, the reciprocal lattice occupies a rather
prominent position in crystallography and there are nearly as
many accounts of its importance as there are crystallographic texts.
It is not intended to review its applications, in any detail, in the
present section; this is done in the remaining chapters and sections
of the present volume. It seems desirable, however, to mention by
way of an introduction some fundamental geometrical, physical and
mathematical aspects of crystallography, and try to give a unified
demonstration of the usefulness of mutually reciprocal bases as an
interpretive tool.

Consider the equation of a lattice plane in the direct lattice. It is
shown in standard textbooks (e.g. Buerger, 1941) that this equation
is given by

hx � ky � lz � n, �1�1�2�3�

where h, k and l are relatively prime integers (i.e. not having a
common factor other than�1 or�1), known as Miller indices of the
lattice plane, x, y and z are the coordinates of any point lying in the
plane and are expressed as fractions of the magnitudes of the basis
vectors a, b and c of the direct lattice, respectively, and n is an
integer denoting the serial number of the lattice plane within the
family of parallel and equidistant �hkl� planes, the interplanar
spacing being denoted by dhkl; the value n � 0 corresponds to the
�hkl� plane passing through the origin.

Let r � xa� yb� zc and rL � ua� vb� wc, where u, v, w are
any integers, denote the position vectors of the point xyz and a
lattice point uvw lying in the plane (1.1.2.3), respectively, and
assume that r and rL are different vectors. If the plane normal is
denoted by N, where N is proportional to the vector product of two
in-plane lattice vectors, the vector form of the equation of the lattice
plane becomes

N � �r� rL� � 0 or N � r � N � rL� �1�1�2�4�
For equations (1.1.2.3) and (1.1.2.4) to be identical, the plane
normal N must satisfy the requirement that N � rL � n, where n is an
(unrestricted) integer.

Let us now consider the basic diffraction relations (e.g. Lipson &
Cochran, 1966). Suppose a parallel beam of monochromatic
radiation, of wavelength �, falls on a lattice of identical point
scatterers. If it is assumed that the scattering is elastic, i.e. there is
no change of the wavelength during this process, the wavevectors of
the incident and scattered radiation have the same magnitude, which
can conveniently be taken as 1��. A consideration of path and phase
differences between the waves outgoing from two point scatterers
separated by the lattice vector rL (defined as above) shows that the
condition for their maximum constructive interference is given by

�s� s0� � rL � n, �1�1�2�5�
where s0 and s are the wavevectors of the incident and scattered
beams, respectively, and n is an arbitrary integer.

Since rL � ua� vb� wc, where u, v and w are unrestricted
integers, equation (1.1.2.5) is equivalent to the equations of Laue:

h � a � h, h � b � k, h � c � l, �1�1�2�6�
where h � s� s0 is the diffraction vector, and h, k and l are integers
corresponding to orders of diffraction from the three-dimensional
lattice (Lipson & Cochran, 1966). The diffraction vector thus has to
satisfy a condition that is analogous to that imposed on the normal
to a lattice plane.

The next relevant aspect to be commented on is the Fourier
expansion of a function having the periodicity of the crystal lattice.
Such functions are e.g. the electron density, the density of nuclear
matter and the electrostatic potential in the crystal, which are the
operative definitions of crystal structure in X-ray, neutron and
electron-diffraction methods of crystal structure determination. A
Fourier expansion of such a periodic function may be thought of as a
superposition of waves (e.g. Buerger, 1959), with wavevectors
related to the interplanar spacings dhkl, in the crystal lattice.
Denoting the wavevector of a Fourier wave by g (a function of hkl),
the phase of the Fourier wave at the point r in the crystal is given by
2�g � r, and the triple Fourier series corresponding to the expansion
of the periodic function, say G(r), can be written as

G�r� ��

g
C�g� exp��2�ig � r�, �1�1�2�7�

where C(g) are the amplitudes of the Fourier waves, or Fourier
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coefficients, which are related to the experimental data. Numerous
examples of such expansions appear throughout this volume.

The permissible wavevectors in the above expansion are
restricted by the periodicity of the function G(r). Since, by
definition, G�r� � G�r� rL�, where rL is a direct-lattice vector,
the right-hand side of (1.1.2.7) must remain unchanged when r is
replaced by r� rL. This, however, can be true only if the scalar
product g � rL is an integer.

Each of the above three aspects of crystallography may lead,
independently, to a useful introduction of the reciprocal vectors, and
there are many examples of this in the literature. It is interesting,
however, to consider the representation of the equation

v � rL � n, �1�1�2�8�
which is common to all three, in its most convenient form.
Obviously, the vector v which stands for the plane normal, the
diffraction vector, and the wavevector in a Fourier expansion, may
still be referred to any permissible basis and so may rL, by an
appropriate transformation.

Let v � UA� VB�WC, where A, B and C are linearly
independent vectors. Equation (1.1.2.8) can then be written as

�UA� VB�WC� � �ua� vb� wc� � n, �1�1�2�9�
or, in matrix notation,

�UVW�
A
B
C

�

�

�

� � �abc�
u
v
w

�

�

�

� � n, �1�1�2�10�

or

�UVW �
A � a A � b A � c
B � a B � b B � c
C � a C � b C � c

�

�

�

�
u
v
w

�

�

�

� � n� �1�1�2�11�

The simplest representation of equation (1.1.2.8) results when the
matrix of scalar products in (1.1.2.11) reduces to a unit matrix. This
can be achieved (i) by choosing the basis vectors ABC to be
orthonormal to the basis vectors abc, while requiring that the
components of rL be integers, or (ii) by requiring that the bases
ABC and abc coincide with the same orthonormal basis, i.e.
expressing both v and rL, in (1.1.2.8), in the same Cartesian system.
If we choose the first alternative, it is seen that:

(1) The components of the vector v, and hence those of N, h and
g, are of necessity integers, since u, v and w are already integral. The
components of v include Miller indices; in the case of the lattice
plane, they coincide with the orders of diffraction from a three-
dimensional lattice of scatterers, and correspond to the summation
indices in the triple Fourier series (1.1.2.7).

(2) The basis vectors A, B and C are reciprocal to a, b and c, as
can be seen by comparing the scalar products in (1.1.2.11) with
those in (1.1.2.1) and (1.1.2.2). In fact, the bases ABC and abc are
mutually reciprocal. Since there are no restrictions on the integers
U, V and W, the vector v belongs to a lattice which, on account of its
basis, is called the reciprocal lattice.

It follows that, at least in the present case, algebraic simplicity
goes together with ease of interpretation, which certainly accounts
for much of the importance of the reciprocal lattice in crystal-
lography. The second alternative of reducing the matrix in
(1.1.2.11) to a unit matrix, a transformation of (1.1.2.8) to a
Cartesian system, leads to non-integral components of the vectors,
which makes any interpretation of v or rL much less transparent.
However, transformations to Cartesian systems are often very
useful in crystallographic computing and will be discussed below
(see also Chapters 2.3 and 3.3 in this volume).

We shall, in what follows, abandon all the temporary notation
used above and write the reciprocal-lattice vector as

h � ha� � kb� � lc� �1�1�2�12�
or

h � h1a1 � h2a2 � h3a3 ��3

i�1
hiai, �1�1�2�13�

and denote the direct-lattice vectors by rL � ua� vb� wc, as
above, or by

rL � u1a1 � u2a2 � u3a3 �
�3

i�1
uiai� �1�1�2�14�

The representations (1.1.2.13) and (1.1.2.14) are used in the tensor-
algebraic formulation of the relationships between mutually
reciprocal bases (see Section 1.1.4 below).

1.1.3. Fundamental relationships

We now present a brief derivation and a summary of the most
important relationships between the direct and the reciprocal bases.
The usual conventions of vector algebra are observed and the results
are presented in the conventional crystallographic notation.
Equations (1.1.2.1) and (1.1.2.2) now become

a � b� � a � c� � b � a� � b � c� � c � a� � c � b� � 0 �1�1�3�1�
and

a � a� � b � b� � c � c� � 1, �1�1�3�2�
respectively, and the relationships are obtained as follows.

1.1.3.1. Basis vectors

It is seen from (1.1.3.1) that a� must be proportional to the vector
product of b and c,

a� � K�b	 c�,
and, since a � a� � 1, the proportionality constant K equals
1�
a � �b	 c��. The mixed product a � �b	 c� can be interpreted
as the positive volume of the unit cell in the direct lattice only if a, b
and c form a right-handed set. If the above condition is fulfilled, we
obtain

a� � b	 c
V

, b� � c	 a
V

, c� � a	 b
V

�1�1�3�3�

and analogously

a � b� 	 c�

V � , b � c� 	 a�

V � , c � a� 	 b�

V � , �1�1�3�4�

where V and V � are the volumes of the unit cells in the associated
direct and reciprocal lattices, respectively. Use has been made of the
fact that the mixed product, say a � �b	 c�, remains unchanged
under cyclic rearrangement of the vectors that appear in it.

1.1.3.2. Volumes

The reciprocal relationship of V and V � follows readily. We have
from equations (1.1.3.2), (1.1.3.3) and (1.1.3.4)

c � c� � �a	 b� � �a� 	 b��
VV � � 1�

If we make use of the vector identity
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�A	 B� � �C	 D� � �A � C��B � D� � �A � D��B � C�, �1�1�3�5�
and equations (1.1.3.1) and (1.1.3.2), it is seen that V � � 1�V .

1.1.3.3. Angular relationships

The relationships of the angles �,�, � between the pairs of
vectors (b, c), (c, a) and (a, b), respectively, and the angles
��,��, �� between the corresponding pairs of reciprocal basis
vectors, can be obtained by simple vector algebra. For example, we
have from (1.1.3.3):

(i) b� � c� � b�c� cos��, with

b� � ca sin�
V

and c� � ab sin �
V

and (ii)

b� � c� � �c	 a� � �a	 b�
V 2 �

If we make use of the identity (1.1.3.5), and compare the two
expressions for b� � c�, we readily obtain

cos�� � cos� cos � � cos�
sin� sin �

� �1�1�3�6�

Similarly,

cos�� � cos � cos�� cos�
sin � sin�

�1�1�3�7�

and

cos �� � cos� cos� � cos �
sin� sin�

� �1�1�3�8�

The expressions for the cosines of the direct angles in terms of those
of the reciprocal ones are analogous to (1.1.3.6)–(1.1.3.8). For
example,

cos� � cos�� cos �� � cos��

sin�� sin ��
�

1.1.3.4. Matrices of metric tensors

Various computational and algebraic aspects of mutually
reciprocal bases are most conveniently expressed in terms of the
metric tensors of these bases. The tensors will be treated in some
detail in the next section, and only the definitions of their matrices
are given and interpreted below.

Consider the length of the vector r � xa� yb� zc. This is given
by

�r� � 
�xa� yb� zc� � �xa� yb� zc��1�2 �1�1�3�9�
and can be written in matrix form as

�r� � 
xT Gx�1�2, �1�1�3�10�
where

x �
x
y
z

�

�

�

�, xT � �xyz�

and

G �
a � a a � b a � c

b � a b � b b � c

c � a c � b c � c

�

�
�

�

�
� �1�1�3�11�

�
a2 ab cos � ac cos�

ba cos � b2 bc cos�

ca cos � cb cos� c2

�

�
�

�

�
�� �1�1�3�12�

This is the matrix of the metric tensor of the direct basis, or briefly
the direct metric. The corresponding reciprocal metric is given by

G� �
a� � a� a� � b� a� � c�

b� � a� b� � b� b� � c�

c� � a� c� � b� c� � c�

�

�
�

�

�
� �1�1�3�13�

�
a�2 a�b� cos �� a�c� cos ��

b�a� cos �� b�2 b�c� cos��

c�a� cos �� c�b� cos�� c�2

�

�
�

�

�
�� �1�1�3�14�

The matrices G and G� are of fundamental importance in
crystallographic computations and transformations of basis vectors
and coordinates from direct to reciprocal space and vice versa.
Examples of applications are presented in Part 3 of this volume and
in the remaining sections of this chapter.

It can be shown (e.g. Buerger, 1941) that the determinants of G
and G� equal the squared volumes of the direct and reciprocal unit
cells, respectively. Thus,

det �G� � 
a � �b	 c��2 � V 2 �1�1�3�15�
and

det �G�� � 
a� � �b� 	 c���2 � V �2, �1�1�3�16�
and a direct expansion of the determinants, from (1.1.3.12) and
(1.1.3.14), leads to

V � abc�1� cos2 �� cos2 � � cos2 �

� 2 cos� cos� cos ��1�2 �1�1�3�17�
and

V � � a�b�c��1� cos2 �� � cos2 �� � cos2 ��

� 2 cos�� cos �� cos ���1�2� �1�1�3�18�
The following algorithm has been found useful in computational
applications of the above relationships to calculations in reciprocal
space (e.g. data reduction) and in direct space (e.g. crystal
geometry).

(1) Input the direct unit-cell parameters and construct the matrix
of the metric tensor [cf. equation (1.1.3.12)].

(2) Compute the determinant of the matrix G and find the inverse
matrix, G�1; this inverse matrix is just G�, the matrix of the metric
tensor of the reciprocal basis (see also Section 1.1.4 below).

(3) Use the elements of G�, and equation (1.1.3.14), to obtain the
parameters of the reciprocal unit cell.

The direct and reciprocal sets of unit-cell parameters, as well as
the corresponding metric tensors, are now available for further
calculations.

Explicit relations between direct- and reciprocal-lattice para-
meters, valid for the various crystal systems, are given in most
textbooks on crystallography [see also Chapter 1.1 of Volume C
(Koch, 1999)].
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1.1.4. Tensor-algebraic formulation

The present section summarizes the tensor-algebraic properties of
mutually reciprocal sets of basis vectors, which are of importance in
the various aspects of crystallography. This is not intended to be a
systematic treatment of tensor algebra; for more thorough
expositions of the subject the reader is referred to relevant
crystallographic texts (e.g. Patterson, 1967; Sands, 1982), and
other texts in the physical and mathematical literature that deal with
tensor algebra and analysis.

Let us first recall that symbolic vector and matrix notations, in
which basis vectors and coordinates do not appear explicitly, are
often helpful in qualitative considerations. If, however, an
expression has to be evaluated, the various quantities appearing in
it must be presented in component form. One of the best ways to
achieve a concise presentation of geometrical expressions in
component form, while retaining much of their ‘transparent’
symbolic character, is their tensor-algebraic formulation.

1.1.4.1. Conventions

We shall adhere to the following conventions:
(i) Notation for direct and reciprocal basis vectors:

a � a1, b � a2, c � a3

a� � a1, b� � a2, c� � a3�

Subscripted quantities are associated in tensor algebra with
covariant, and superscripted with contravariant transformation
properties. Thus the basis vectors of the direct lattice are
represented as covariant quantities and those of the reciprocal
lattice as contravariant ones.

(ii) Summation convention: if an index appears twice in an
expression, once as subscript and once as superscript, a summation
over this index is thereby implied and the summation sign is
omitted. For example,

�

i

�

j
xiTijx

j will be written xiTijx
j

since both i and j conform to the convention. Such repeating indices
are often called dummy indices. The implied summation over
repeating indices is also often used even when the indices are at the
same level and the coordinate system is Cartesian; there is no
distinction between contravariant and covariant quantities in
Cartesian frames of reference (see Chapter 3.3).

(iii) Components (coordinates) of vectors referred to the
covariant basis are written as contravariant quantities, and vice
versa. For example,

r � xa� yb� zc � x1a1 � x2a2 � x3a3 � xiai

h � ha� � kb� � lc� � h1a1 � h2a2 � h3a3 � hiai�

1.1.4.2. Transformations

A familiar concept but a fundamental one in tensor algebra is the
transformation of coordinates. For example, suppose that an atomic
position vector is referred to two unit-cell settings as follows:

r � xkak �1�1�4�1�
and

r � x
ka
k� �1�1�4�2�
Let us multiply both sides of (1.1.4.1) and (1.1.4.2), on the right, by
the vectors am, m = 1, 2, or 3, i.e. by the reciprocal vectors to the
basis a1a2a3. We obtain from (1.1.4.1)

xkak � am � xk�m
k � xm,

where �m
k is the Kronecker symbol which equals 1 when k � m and

equals zero if k �� m, and by comparison with (1.1.4.2) we have

xm � x
kTm
k , �1�1�4�3�

where Tm
k � a
k � am is an element of the required transformation

matrix. Of course, the same transformation could have been written
as

xm � Tm
k x
k , �1�1�4�4�

where Tm
k � am � a
k .

A tensor is a quantity that transforms as the product of
coordinates, and the rank of a tensor is the number of
transformations involved (Patterson, 1967; Sands, 1982). E.g. the
product of two coordinates, as in the above example, transforms
from the a
 basis to the a basis as

xmxn � Tm
p Tn

q x
px
q; �1�1�4�5�
the same transformation law applies to the components of a
contravariant tensor of rank two, the components of which are
referred to the primed basis and are to be transformed to the
unprimed one:

Qmn � Tm
p Tn

q Q
pq� �1�1�4�6�

1.1.4.3. Scalar products

The expression for the scalar product of two vectors, say u and v,
depends on the bases to which the vectors are referred. If we admit
only the covariant and contravariant bases defined above, we have
four possible types of expression:

�I� u � uiai, v � viai

u � v � uiv j�ai � aj� � uiv jgij, �1�1�4�7�
�II� u � uiai, v � viai

u � v � uivj�ai � a j� � uivjg
ij, �1�1�4�8�

�III� u � uiai, v � viai

u � v � uivj�ai � a j� � uivj�
j

i � uivi, �1�1�4�9�
�IV� u � uiai, v � viai

u � v � uiv
j�ai � aj� � uiv

j�i
j � uiv

i� �1�1�4�10�
(i) The sets of scalar products gij � ai � aj (1.1.4.7) and gij �

ai � a j (1.1.4.8) are known as the metric tensors of the covariant
(direct) and contravariant (reciprocal) bases, respectively; the
corresponding matrices are presented in conventional notation in
equations (1.1.3.11) and (1.1.3.13). Numerous applications of these
tensors to the computation of distances and angles in crystals are
given in Chapter 3.1.

(ii) Equations (1.1.4.7) to (1.1.4.10) furnish the relationships
between the covariant and contravariant components of the same
vector. Thus, comparing (1.1.4.7) and (1.1.4.9), we have

vi � v jgij� �1�1�4�11�
Similarly, using (1.1.4.8) and (1.1.4.10) we obtain the inverse
relationship

vi � vjg
ij� �1�1�4�12�

The corresponding relationships between covariant and contra-
variant bases can now be obtained if we refer a vector, say v, to each
of the bases

v � viai � vkak ,

and make use of (1.1.4.11) and (1.1.4.12). Thus, e.g.,
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viai � �vkgik�ai � vkak�

Hence

ak � gikai �1�1�4�13�
and, similarly,

ak � gikai� �1�1�4�14�
(iii) The tensors gij and gij are symmetric, by definition.
(iv) It follows from (1.1.4.11) and (1.1.4.12) or (1.1.4.13) and

(1.1.4.14) that the matrices of the direct and reciprocal metric
tensors are mutually inverse, i.e.

g11 g12 g13

g21 g22 g23

g31 g32 g33

�

�

�

�

�1

�
g11 g12 g13

g21 g22 g23

g31 g32 g33

�

�

�

�, �1�1�4�15�

and their determinants are mutually reciprocal.

1.1.4.4. Examples

There are numerous applications of tensor notation in crystal-
lographic calculations, and many of them appear in the various
chapters of this volume. We shall therefore present only a few
examples.

(i) The (squared) magnitude of the diffraction vector h � hiai is
given by

�h�2 � 4 sin2 	

�2
� hihjg

ij� �1�1�4�16�

This concise relationship is a starting point in a derivation of unit-
cell parameters from experimental data.

(ii) The structure factor, including explicitly anisotropic
displacement tensors, can be written in symbolic matrix notation as

F�h� ��N

j�1
f�i� exp��hT�� j�h� exp�2�ihT r� j��, �1�1�4�17�

where �� j� is the matrix of the anisotropic displacement tensor of
the jth atom. In tensor notation, with the quantities referred to their
natural bases, the structure factor can be written as

F�h1h2h3� �
�N

j�1
f� j� exp��hihk�

ik
� j�� exp�2�ihix

i
� j��, �1�1�4�18�

and similarly concise expressions can be written for the derivatives
of the structure factor with respect to the positional and
displacement parameters. The summation convention applies only
to indices denoting components of vectors and tensors; the atom
subscript j in (1.1.4.18) clearly does not qualify, and to indicate this
it has been surrounded by parentheses.

(iii) Geometrical calculations, such as those described in the
chapters of Part 3, may be carried out in any convenient basis but
there are often some definite advantages to computations that are
referred to the natural, non-Cartesian bases (see Chapter 3.1).
Usually, the output positional parameters from structure refinement
are available as contravariant components of the atomic position
vectors. If we transform them by (1.1.4.11) to their covariant form,
and store these covariant components of the atomic position vectors,
the computation of scalar products using equations (1.1.4.9) or
(1.1.4.10) is almost as efficient as it would be if the coordinates
were referred to a Cartesian system. For example, the right-hand
side of the vector identity (1.1.3.5), which is employed in the
computation of dihedral angles, can be written as

�AiC
i��BkDk� � �AiD

i��BkCk��

This is a typical application of reciprocal space to ordinary direct-
space computations.

(iv) We wish to derive a tensor formulation of the vector product,
along similar lines to those of Chapter 3.1. As with the scalar
product, there are several such formulations and we choose that
which has both vectors, say u and v, and the resulting product,
u	 v, referred to a covariant basis. We have

u	 v � uiai 	 v jaj

� uiv j�ai 	 aj�� �1�1�4�19�
If we make use of the relationships (1.1.3.3) between the direct and
reciprocal basis vectors, it can be verified that

ai 	 aj � Vekijak , �1�1�4�20�
where V is the volume of the unit cell and the antisymmetric tensor
ekij equals �1, � 1, or 0 according as kij is an even permutation of
123, an odd permutation of 123 or any two of the indices kij have the
same value, respectively. We thus have

u	 v � Vekiju
iv jak

� Vglkekiju
iv jal, �1�1�4�21�

since by (1.1.4.13), ak � glkal.
(v) The rotation operator. The general formulation of an

expression for the rotation operator is of interest in crystal structure
determination by Patterson techniques (see Chapter 2.3) and in
molecular modelling (see Chapter 3.3), and another well known
crystallographic application of this device is the derivation of the
translation, libration and screw-motion tensors by the method of
Schomaker & Trueblood (1968), discussed in Part 8 of Volume C
(IT C, 1999) and in Chapter 1.2 of this volume. A digression on an
elementary derivation of the above seems to be worthwhile.

Suppose we wish to rotate the vector r, about an axis coinciding
with the unit vector k, through the angle 	 and in the positive sense,
i.e. an observer looking in the direction of �k will see r rotating in
the clockwise sense. The vectors r, k and the rotated (target) vector
r
 are referred to an origin on the axis of rotation (see Fig. 1.1.4.1).
Our purpose is to express r
 in terms of r, k and 	 by a general vector

Fig. 1.1.4.1. Derivation of the general expression for the rotation operator.
The figure illustrates schematically the decompositions and other simple
geometrical considerations required for the derivation outlined in
equations (1.1.4.22)–(1.1.4.28).
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formula, and represent the components of the rotated vectors in
coordinate systems that might be of interest.

Let us decompose the vector r and the (target) vector r
 into their
components which are parallel ��� and perpendicular ��� to the axis
of rotation:

r � r� � r� �1�1�4�22�
and

r
 � r
� � r
�� �1�1�4�23�
It can be seen from Fig. 1.1.4.1 that the parallel components of r and
r
 are

r� � r
� � k�k � r� �1�1�4�24�
and thus

r� � r � k�k � r�� �1�1�4�25�
Only a suitable expression for r
� is missing. We can find this by
decomposing r
� into its components (i) parallel to r� and (ii)
parallel to k	 r�. We have, as in (1.1.4.24),

r
� �
r�
�r��

r�
�r�� � r
�

� 	

� k	 r�
�k	 r��

k	 r�
�k	 r�� � r
�

� 	

� �1�1�4�26�

We observe, using Fig. 1.1.4.1, that

�r
�� � �r�� � �k	 r��
and

k	 r� � k	 r,

and, further,

r
� � r� � �r��2 cos 	

and

r
� � �k	 r�� � k � �r
� 	 r�� � �r��2 sin 	,

since the unit vector k is perpendicular to the plane containing the
vectors r� and r
�. Equation (1.1.4.26) now reduces to

r
� � r� cos 	� �k	 r� sin 	 �1�1�4�27�
and equations (1.1.4.23), (1.1.4.25) and (1.1.4.27) lead to the
required result

r
 � k�k � r��1� cos 	� � r cos 	� �k	 r� sin 	� �1�1�4�28�
The above general expression can be written as a linear
transformation by referring the vectors to an appropriate basis or
bases. We choose here r � x jaj, r
 � x
iai and assume that the
components of k are available in the direct and reciprocal bases.

If we make use of equations (1.1.4.9) and (1.1.4.21), (1.1.4.28)
can be written as

x
i � ki�k jx
j��1� cos 	� � �i

jx
j cos 	� Vgimempjk

px j sin 	,

�1�1�4�29�
or briefly

x
i � Ri
jx

j, �1�1�4�30�
where

Ri
j � kikj�1� cos 	� � �i

j cos 	� Vgimempjk
p sin 	 �1�1�4�31�

is a matrix element of the rotation operator R which carries the
vector r into the vector r
. Of course, the representation (1.1.4.31) of
R depends on our choice of reference bases.

If all the vectors are referred to a Cartesian basis, that is three
orthogonal unit vectors, the direct and reciprocal metric tensors
reduce to a unit tensor, there is no difference between covariant and
contravariant quantities, and equation (1.1.4.31) reduces to

Rij � kikj�1� cos 	� � �ij cos 	� eipjkp sin 	, �1�1�4�32�
where all the indices have been taken as subscripts, but the
summation convention is still observed. The relative simplicity of
(1.1.4.32), as compared to (1.1.4.31), often justifies the transforma-
tion of all the vector quantities to a Cartesian basis. This is certainly
the case for any extensive calculation in which covariances of the
structural parameters are not considered.

1.1.5. Transformations

1.1.5.1. Transformations of coordinates

It happens rather frequently that a vector referred to a given basis
has to be re-expressed in terms of another basis, and it is then
required to find the relationship between the components
(coordinates) of the vector in the two bases. Such situations have
already been indicated in the previous section. The purpose of the
present section is to give a general method of finding such
relationships (transformations), and discuss some simplifications
brought about by the use of mutually reciprocal and Cartesian bases.
We do not assume anything about the bases, in the general
treatment, and hence the tensor formulation of Section 1.1.4 is
not appropriate at this stage.

Let

r ��3

j�1
uj�1�cj�1� �1�1�5�1�

and

r ��3

j�1
uj�2�cj�2� �1�1�5�2�

be the given and required representations of the vector r,
respectively. Upon the formation of scalar products of equations
(1.1.5.1) and (1.1.5.2) with the vectors of the second basis, and
employing again the summation convention, we obtain

uk�1�
ck�1� � cl�2�� � uk�2�
ck�2� � cl�2��, l � 1, 2, 3 �1�1�5�3�
or

uk�1�Gkl�12� � uk�2�Gkl�22�, l � 1, 2, 3, �1�1�5�4�
where Gkl�12� � ck�1� � cl�2� and Gkl�22� � ck�2� � cl�2�. Simi-
larly, if we choose the basis vectors cl�1�, l = 1, 2, 3, as the
multipliers of (1.1.5.1) and (1.1.5.2), we obtain

uk�1�Gkl�11� � uk�2�Gkl�21�, l � 1, 2, 3, �1�1�5�5�
where Gkl�11� � ck�1� � cl�1� and Gkl�21� � ck�2� � cl�1�. Rewrit-
ing (1.1.5.4) and (1.1.5.5) in symbolic matrix notation, we have

uT�1�G�12� � uT �2�G�22�, �1�1�5�6�
leading to

uT �1� � uT �2��G�22�
G�12���1�
and

uT�2� � uT�1��G�12�
G�22���1�, �1�1�5�7�
and

uT�1�G�11� � uT �2�G�21�, �1�1�5�8�
7
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leading to

uT �1� � uT�2��G�21�
G�11���1�
and

uT �2� � uT �1��G�11�
G�21���1�� �1�1�5�9�
Equations (1.1.5.7) and (1.1.5.9) are symbolic general expres-

sions for the transformation of the coordinates of r from one
representation to the other.

In the general case, therefore, we require the matrices of scalar
products of the basis vectors, G(12) and G(22) or G(11) and G(21) –
depending on whether the basis ck�2� or ck�1�, k = 1, 2, 3, was
chosen to multiply scalarly equations (1.1.5.1) and (1.1.5.2). Note,
however, the following simplifications.

(i) If the bases ck�1� and ck�2� are mutually reciprocal, each of
the matrices of mixed scalar products, G(12) and G(21), reduces to a
unit matrix. In this important special case, the transformation is
effected by the matrices of the metric tensors of the bases in
question. This can be readily seen from equations (1.1.5.7) and
(1.1.5.9), which then reduce to the relationships between the
covariant and contravariant components of the same vector [see
equations (1.1.4.11) and (1.1.4.12) above].

(ii) If one of the bases, say ck�2�, is Cartesian, its metric tensor is
by definition a unit tensor, and the transformations in (1.1.5.7)
reduce to

uT �1� � uT �2�
G�12���1

and

uT �2� � uT �1�G�12�� �1�1�5�10�
The transformation matrix is now the mixed matrix of the scalar
products, whether or not the basis ck�1�, k = 1, 2, 3, is also Cartesian.
If, however, both bases are Cartesian, the transformation can also be
interpreted as a rigid rotation of the coordinate axes (see Chapter
3.3).

It should be noted that the above transformations do not involve
any shift of the origin. Transformations involving such shifts,
notably the symmetry transformations of the space group, are
treated rather extensively in Volume A of International Tables for
Crystallography (1995) [see e.g. Part 5 there (Arnold, 1983)].

1.1.5.2. Example

This example deals with the construction of a Cartesian system in
a crystal with given basis vectors of its direct lattice. We shall also
require that the Cartesian system bears a clear relationship to at least
one direction in each of the direct and reciprocal lattices of the
crystal; this may be useful in interpreting a physical property which
has been measured along a given lattice vector or which is
associated with a given lattice plane. For a better consistency of
notation, the Cartesian components will be denoted as contra-
variant.

The appropriate version of equations (1.1.5.1) and (1.1.5.2) is
now

r � xiai �1�1�5�11�
and

r � X kek , �1�1�5�12�
where the Cartesian basis vectors are: e1 � rL��rL�, e2 � r���r��
and e3 � e1 	 e2, and the vectors rL and r� are given by

rL � uiai and r� � hkak ,

where ui and hk , i, k = 1, 2, 3, are arbitrary integers. The vectors rL
and r� must be mutually perpendicular, rL � r� � uihi � 0. The

X 1�X � axis of the Cartesian system thus coincides with a direct-
lattice vector, and the X 2�Y� axis is parallel to a vector in the
reciprocal lattice.

Since the basis in (1.1.5.12) is a Cartesian one, the required
transformations are given by equations (1.1.5.10) as

xi � X k�T�1�i
k and X i � xkTi

k , �1�1�5�13�
where Ti

k � ak � ei, k, i = 1, 2, 3, form the matrix of the scalar
products. If we make use of the relationships between covariant and
contravariant basis vectors, and the tensor formulation of the vector
product, given in Section 1.1.4 above (see also Chapter 3.1), we
obtain

T1
k �

1
�rL� gkiu

i

T2
k �

1
�r�� hk �1�1�5�14�

T3
k �

V
�rL��r�� ekipuigplhl�

Note that the other convenient choice, e1 � r� and e2 � rL,
interchanges the first two columns of the matrix T in (1.1.5.14) and
leads to a change of the signs of the elements in the third column.
This can be done by writing ekpi instead of ekip, while leaving the
rest of T3

k unchanged.

1.1.6. Some analytical aspects of the reciprocal space

1.1.6.1. Continuous Fourier transform

Of great interest in crystallographic analyses are Fourier
transforms and these are closely associated with the dual bases
examined in this chapter. Thus, e.g., the inverse Fourier transform
of the electron-density function of the crystal

F�h� � 


cell

�r� exp�2�ih � r� d3r, �1�1�6�1�

where 
�r� is the electron-density function at the point r and the
integration extends over the volume of a unit cell, is the
fundamental model of the contribution of the distribution of
crystalline matter to the intensity of the scattered radiation. For
the conventional Bragg scattering, the function given by (1.1.6.1),
and known as the structure factor, may assume nonzero values only
if h can be represented as a reciprocal-lattice vector. Chapter 1.2 is
devoted to a discussion of the structure factor of the Bragg
reflection, while Chapters 4.1, 4.2 and 4.3 discuss circumstances
under which the scattering need not be confined to the points of the
reciprocal lattice only, and may be represented by reciprocal-space
vectors with non-integral components.

1.1.6.2. Discrete Fourier transform

The electron density 
�r� in (1.1.6.1) is one of the most common
examples of a function which has the periodicity of the crystal.
Thus, for an ideal (infinite) crystal the electron density 
�r� can be
written as


�r� � 
�r� ua� vb� wc�, �1�1�6�2�
and, as such, it can be represented by a three-dimensional Fourier
series of the form


�r� ��

g
C�g� exp��2�ig � r�, �1�1�6�3�

where the periodicity requirement (1.1.6.2) enables one to represent
all the g vectors in (1.1.6.3) as vectors in the reciprocal lattice (see
also Section 1.1.2 above). If we insert the series (1.1.6.3) in the

8

1. GENERAL RELATIONSHIPS AND TECHNIQUES



integrand of (1.1.6.1), interchange the order of summation and
integration and make use of the fact that an integral of a periodic
function taken over the entire period must vanish unless the
integrand is a constant, equation (1.1.6.3) reduces to the
conventional form


�r� � 1
V

�

h

F�h� exp��2�ih � r�, �1�1�6�4�

where V is the volume of the unit cell in the direct lattice and the
summation ranges over all the reciprocal lattice.

Fourier transforms, discrete as well as continuous, are among the
most important mathematical tools of crystallography. The
discussion of their mathematical principles, the modern algorithms
for their computation and their numerous applications in crystal-
lography form the subject matter of Chapter 1.3. Many more
examples of applications of Fourier methods in crystallography are
scattered throughout this volume and the crystallographic literature
in general.

1.1.6.3. Bloch’s theorem

It is in order to mention briefly the important role of reciprocal
space and the reciprocal lattice in the field of the theory of solids. At
the basis of these applications is the periodicity of the crystal
structure and the effect it has on the dynamics (cf. Chapter 4.1) and
electronic structure of the crystal. One of the earliest, and still most
important, theorems of solid-state physics is due to Bloch (1928)
and deals with the representation of the wavefunction of an electron
which moves in a periodic potential. Bloch’s theorem states that:

The eigenstates � of the one-electron Hamiltonian
� � ���h2�2m��2 � U�r�, where U(r) is the crystal potential and
U�r� rL� � U�r� for all rL in the Bravais lattice, can be chosen to have

the form of a plane wave times a function with the periodicity of the
Bravais lattice.

Thus

��r� � exp�ik � r�u�r�, �1�1�6�5�
where

u�r� rL� � u�r� �1�1�6�6�
and k is the wavevector. The proof of Bloch’s theorem can be found
in most modern texts on solid-state physics (e.g. Ashcroft &
Mermin, 1975). If we combine (1.1.6.5) with (1.1.6.6), an
alternative form of the Bloch theorem results:

��r � rL� � exp�ik � rL���r�� �1�1�6�7�
In the important case where the wavefunction � is itself periodic,
i.e.

��r� rL� � ��r�,
we must have exp�ik � rL� � 1. Of course, this can be so only if the
wavevector k equals 2� times a vector in the reciprocal lattice. It is
also seen from equation (1.1.6.7) that the wavevector appearing in
the phase factor can be reduced to a unit cell in the reciprocal lattice
(the basis vectors of which contain the 2� factor), or to the
equivalent polyhedron known as the Brillouin zone (e.g. Ziman,
1969). This periodicity in reciprocal space is of prime importance in
the theory of solids. Some Brillouin zones are discussed in detail in
Chapter 1.5.
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