International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B, ch. 1.3, pp. 25-98   | 1 | 2 |
https://doi.org/10.1107/97809553602060000551

Chapter 1.3. Fourier transforms in crystallography: theory, algorithms and applications

G. Bricognea

aMRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England, and LURE, Bâtiment 209D, Université Paris-Sud, 91405 Orsay, France

References

Agarwal, R. C. (1978). A new least-squares refinement technique based on the fast Fourier transform algorithm. Acta Cryst. A34, 791–809.Google Scholar
Agarwal, R. C. (1980). The refinement of crystal structure by fast Fourier least-squares. In Computing in crystallography, edited by R. Diamond, S. Ramaseshan & K. Venkatesan, pp. 18.01–18.13. Bangalore: The Indian Academy of Science.Google Scholar
Agarwal, R. C. (1981). New results on fast Fourier least-squares refinement technique. In Refinement of protein structures, compiled by P. A. Machin, J. W. Campbell & M. Elder (ref. DL/SCI/R16), pp. 24–28. Warrington: SERC Daresbury Laboratory.Google Scholar
Agarwal, R. C. & Cooley, J. W. (1986). Fourier transform and convolution subroutines for the IBM 3090 Vector facility. IBM J. Res. Dev. 30, 145–162.Google Scholar
Agarwal, R. C. & Cooley, J. W. (1987). Vectorized mixed radix discrete Fourier transform algorithms. Proc. IEEE, 75, 1283–1292.Google Scholar
Agarwal, R. C., Lifchitz, A. & Dodson, E. J. (1981). Appendix (pp. 36–38) to Dodson (1981).Google Scholar
Ahlfors, L. V. (1966). Complex analysis. New York: McGraw-Hill.Google Scholar
Ahmed, F. R. & Barnes, W. H. (1958). Generalized programmes for crystallographic computations. Acta Cryst. 11, 669–671.Google Scholar
Ahmed, F. R. & Cruickshank, D. W. J. (1953a). A refinement of the crystal structure analysis of oxalic acid dihydrate. Acta Cryst. 6, 385–392.Google Scholar
Ahmed, F. R. & Cruickshank, D. W. J. (1953b). Crystallographic calculations on the Manchester University electronic digital computer (Mark II). Acta Cryst. 6, 765–769.Google Scholar
Akhiezer, N. I. (1965). The classical moment problem. Edinburgh and London: Oliver & Boyd.Google Scholar
Alston, N. A. & West, J. (1929). The structure of topaz, [Al(F,OH)]2SiO4. Z. Kristallogr. 69, 149–167.Google Scholar
Apostol, T. M. (1976). Introduction to analytic number theory. New York: Springer-Verlag.Google Scholar
Arnold, H. (2005). Transformations in crystallography. In International Tables for Crystallography, Vol. A. Space-group symmetry, edited by Th. Hahn, Chapter 5.1. Heidelberg: Springer.Google Scholar
Artin, E. (1944). Galois theory. Notre Dame University Press.Google Scholar
Ascher, E. & Janner, A. (1965). Algebraic aspects of crystallography. I. Space groups as extensions. Helv. Phys. Acta, 38, 551–572.Google Scholar
Ascher, E. & Janner, A. (1968). Algebraic aspects of crystallography. II. Non-primitive translations in space groups. Commun. Math. Phys. 11, 138–167.Google Scholar
Ash, J. M. (1976). Multiple trigonometric series. In Studies in harmonic analysis, edited by J. M. Ash, pp. 76–96. MAA studies in mathematics, Vol. 13. The Mathematical Association of America.Google Scholar
Auslander, L. (1965). An account of the theory of crystallographic groups. Proc. Am. Math. Soc. 16, 1230–1236.Google Scholar
Auslander, L., Feig, E. & Winograd, S. (1982). New algorithms for evaluating the 3-dimensional discrete Fourier transform. In Computational crystallography, edited by D. Sayre, pp. 451–461. New York: Oxford University Press.Google Scholar
Auslander, L., Feig, E. & Winograd, S. (1983). New algorithms for the multidimensional discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 31, 388–403.Google Scholar
Auslander, L., Feig, E. & Winograd, S. (1984). Abelian semi-simple algebras and algorithms for the discrete Fourier transform. Adv. Appl. Math. 5, 31–55.Google Scholar
Auslander, L., Johnson, R. W. & Vulis, M. (1988). Evaluating finite Fourier transforms that respect group symmetries. Acta Cryst. A44, 467–478.Google Scholar
Auslander, L. & Shenefelt, M. (1987). Fourier transforms that respect crystallographic symmetries. IBM J. Res. Dev. 31, 213–223.Google Scholar
Auslander, L. & Tolimieri, R. (1979). Is computing with the finite Fourier transform pure or applied mathematics? Bull. Am. Math. Soc. 1, 847–897.Google Scholar
Auslander, L. & Tolimieri, R. (1985). Ring structure and the Fourier transform. Math. Intelligencer, 7, 49–54.Google Scholar
Auslander, L., Tolimieri, R. & Winograd, S. (1982). Hecke's theorem in quadratic reciprocity, finite nilpotent groups and the Cooley–Tukey algorithm. Adv. Math. 43, 122–172.Google Scholar
Ayoub, R. (1963). An introduction to the analytic theory of numbers. Providence, RI: American Mathematical Society.Google Scholar
Baker, E. N. & Dodson, E. J. (1980). Crystallographic refinement of the structure of actinidin at 1.7 Å resolution by fast Fourier least-squares methods. Acta Cryst. A36, 559–572.Google Scholar
Bantz, D. & Zwick, M. (1974). The use of symmetry with the fast Fourier algorithm. Acta Cryst. A30, 257–260.Google Scholar
Barakat, R. (1974). First-order statistics of combined random sinusoidal waves with applications to laser speckle patterns. Opt. Acta, 21, 903–921.Google Scholar
Barrett, A. N. & Zwick, M. (1971). A method for the extension and refinement of crystallographic protein phases utilizing the fast Fourier transform. Acta Cryst. A27, 6–11.Google Scholar
Beevers, C. A. (1952). Fourier strips at a 3° interval. Acta Cryst. 5, 670–673.Google Scholar
Beevers, C. A. & Lipson, H. (1934). A rapid method for the summation of a two-dimensional Fourier series. Philos. Mag. 17, 855–859.Google Scholar
Beevers, C. A. & Lipson, H. (1936). A numerical method for two-dimensional Fourier synthesis. Nature (London), 137, 825–826.Google Scholar
Beevers, C. A. & Lipson, H. (1952). The use of Fourier strips for calculating structure factors. Acta Cryst. 5, 673–675.Google Scholar
Bellman, R. (1958). Dynamic programming and stochastic control processes. Inf. Control, 1, 228–239.Google Scholar
Bennett, J. M. & Kendrew, J. C. (1952). The computation of Fourier syntheses with a digital electronic calculating machine. Acta Cryst. 5, 109–116.Google Scholar
Berberian, S. K. (1962). Measure and integration. New York: Macmillan. [Reprinted by Chelsea, New York, 1965.]Google Scholar
Bertaut, E. F. (1952). L'énergie électrostatique de réseaux ioniques. J. Phys. Radium, 13, 499–505.Google Scholar
Bertaut, E. F. (1955a). La méthode statistique en cristallographie. I. Acta Cryst. 8, 537–543.Google Scholar
Bertaut, E. F. (1955b). La méthode statistique en cristallographie. II. Quelques applications. Acta Cryst. 8, 544–548.Google Scholar
Bertaut, E. F. (1955c). Fonction de répartition: application à l'approache directe des structures. Acta Cryst. 8, 823–832.Google Scholar
Bertaut, E. F. (1956a). Les groupes de translation non primitifs et la méthode statistique. Acta Cryst. 9, 322.Google Scholar
Bertaut, E. F. (1956b). Tables de linéarisation des produits et puissances des facteurs de structure. Acta Cryst. 9, 322–323.Google Scholar
Bertaut, E. F. (1956c). Algèbre des facteurs de structure. Acta Cryst. 9, 769–770.Google Scholar
Bertaut, E. F. (1959a). IV. Algèbre des facteurs de structure. Acta Cryst. 12, 541–549.Google Scholar
Bertaut, E. F. (1959b). V. Algèbre des facteurs de structure. Acta Cryst. 12, 570–574.Google Scholar
Bertaut, E. F. & Waser, J. (1957). Structure factor algebra. II. Acta Cryst. 10, 606–607.Google Scholar
Bhattacharya, R. N. & Rao, R. R. (1976). Normal approximation and asymptotic expansions. New York: John Wiley.Google Scholar
Bieberbach, L. (1911). Über die Bewegungsgruppen der Euklidischen Raume I. Math. Ann. 70, 297–336.Google Scholar
Bieberbach, L. (1912). Über die Bewegungsgruppen der Euklidischen Raume II. Math. Ann. 72, 400–412.Google Scholar
Bienenstock, A. & Ewald, P. P. (1962). Symmetry of Fourier space. Acta Cryst. 15, 1253–1261.Google Scholar
Blahut, R. E. (1985). Fast algorithms for digital signal processing. Reading: Addison-Wesley.Google Scholar
Bleistein, N. & Handelsman, R. A. (1986). Asymptotic expansions of integrals. New York: Dover Publications.Google Scholar
Bloomer, A. C., Champness, J. N., Bricogne, G., Staden, R. & Klug, A. (1978). Protein disk of tobacco mosaic virus at 2.8 Ångström resolution showing the interactions within and between subunits. Nature (London), 276, 362–368.Google Scholar
Blow, D. M. & Crick, F. H. C. (1959). The treatment of errors in the isomorphous replacement method. Acta Cryst. 12, 794–802.Google Scholar
Bochner, S. (1932). Vorlesungen über Fouriersche Integrale. Leipzig: Akademische Verlagsgesellschaft.Google Scholar
Bochner, S. (1959). Lectures on Fourier integrals. Translated from Bochner (1932) by M. Tenenbaum & H. Pollard. Princeton University Press.Google Scholar
Bode, W. & Schwager, P. (1975). The refined crystal structure of bovine β-trypsin at 1.8Å resolution. II. Crystallographic refinement, calcium-binding site, benzamidine binding site and active site at pH 7.0. J. Mol. Biol. 98, 693–717.Google Scholar
Bondot, P. (1971). Application de la transformée de Fourier performante aux calculs cristallographiques. Acta Cryst. A27, 492–494.Google Scholar
Booth, A. D. (1945a). Two new modifications of the Fourier method of X-ray structure analysis. Trans. Faraday Soc. 41, 434–438.Google Scholar
Booth, A. D. (1945b). An expression for following the process of refinement in X-ray structure analysis using Fourier series. Philos. Mag. 36, 609–615.Google Scholar
Booth, A. D. (1945c). Accuracy of atomic co-ordinates derived from Fourier synthesis. Nature (London), 156, 51–52.Google Scholar
Booth, A. D. (1946a). A differential Fourier method for refining atomic parameters in crystal structure analysis. Trans. Faraday Soc. 42, 444–448.Google Scholar
Booth, A. D. (1946b). The simultaneous differential refinement of co-ordinates and phase angles in X-ray Fourier synthesis. Trans. Faraday Soc. 42, 617–619.Google Scholar
Booth, A. D. (1946c). The accuracy of atomic co-ordinates derived from Fourier series in X-ray structure analysis. Proc. R. Soc. London Ser. A, 188, 77–92.Google Scholar
Booth, A. D. (1947a). The accuracy of atomic co-ordinates derived from Fourier series in X-ray structure analysis. III. Proc. R. Soc. London Ser. A, 190, 482–489.Google Scholar
Booth, A. D. (1947b). The accuracy of atomic co-ordinates derived from Fourier series in X-ray structure analysis. IV. The two-dimensional projection of oxalic acid. Proc. R. Soc. London Ser. A, 190, 490–496.Google Scholar
Booth, A. D. (1947c). A new refinement technique for X-ray structure analysis. J. Chem. Phys. 15, 415–416.Google Scholar
Booth, A. D. (1947d). Application of the method of steepest descents to X-ray structure analysis. Nature (London), 160, 196.Google Scholar
Booth, A. D. (1948a). A new Fourier refinement technique. Nature (London), 161, 765–766.Google Scholar
Booth, A. D. (1948b). Fourier technique in X-ray organic structure analysis. Cambridge University Press.Google Scholar
Booth, A. D. (1949). The refinement of atomic parameters by the technique known in X-ray crystallography as `the method of steepest descents'. Proc. R. Soc. London Ser. A, 197, 336–355.Google Scholar
Born, M. & Huang, K. (1954). Dynamical theory of crystal lattices. Oxford University Press.Google Scholar
Bracewell, R. N. (1986). The Fourier transform and its applications, 2nd ed., revised. New York: McGraw-Hill.Google Scholar
Bragg, W. H. (1915). X-rays and crystal structure. (Bakerian Lecture.) Philos. Trans. R. Soc. London Ser. A, 215, 253–274.Google Scholar
Bragg, W. L. (1929). Determination of parameters in crystal structures by means of Fourier series. Proc. R. Soc. London Ser. A, 123, 537–559.Google Scholar
Bragg, W. L. (1975). The development of X-ray analysis, edited by D. C. Phillips & H. Lipson. London: Bell.Google Scholar
Bragg, W. L. & Lipson, H. (1936). The employment of contoured graphs of structure-factor in crystal analysis. Z. Kristallogr. 95, 323–337.Google Scholar
Bragg, W. L. & West, J. (1929). A technique for the X-ray examination of crystal structures with many parameters. Z. Kristallogr. 69, 118–148.Google Scholar
Bragg, W. L. & West, J. (1930). A note on the representation of crystal structure by Fourier series. Philos. Mag. 10, 823–841.Google Scholar
Bremermann, H. (1965). Distributions, complex variables, and Fourier transforms. Reading: Addison-Wesley.Google Scholar
Bricogne, G. (1974). Geometric sources of redundancy in intensity data and their use for phase determination. Acta Cryst. A30, 395–405.Google Scholar
Bricogne, G. (1976). Methods and programs for direct-space exploitation of geometric redundancies. Acta Cryst. A32, 832–847.Google Scholar
Bricogne, G. (1982). Generalised density modification methods. In Computational crystallography, edited by D. Sayre, pp. 258–264. New York: Oxford University Press.Google Scholar
Bricogne, G. (1984). Maximum entropy and the foundations of direct methods. Acta Cryst. A40, 410–445.Google Scholar
Bricogne, G. (1988). A Bayesian statistical theory of the phase problem. I. A multichannel maximum entropy formalism for constructing generalised joint probability distributions of structure factors. Acta Cryst. A44, 517–545.Google Scholar
Bricogne, G. & Tolimieri, R. (1990). Two-dimensional FFT algorithms on data admitting 90°-rotational symmetry. In Signal processing theory, edited by L. Auslander, T. Kailath & S. Mitter, pp. 25–35. New York: Springer-Verlag.Google Scholar
Brigham, E. O. (1988). The fast Fourier transform and its applications. Englewood Cliffs: Prentice-Hall.Google Scholar
Brill, R., Grimm, H., Hermann, C. & Peters, C. (1939). Anwendung der röntgenographischen Fourieranalyse auf Fragen den chemischen Bindung. Ann. Phys. (Leipzig), 34, 393–445.Google Scholar
Britten, P. L. & Collins, D. M. (1982). Information theory as a basis for the maximum determinant. Acta Cryst. A38, 129–132.Google Scholar
Brown, H. (1969). An algorithm for the determination of space groups. Math. Comput. 23, 499–514.Google Scholar
Brown, H., Bülow, R., Neubüser, J., Wondratschek, H. & Zassenhaus, H. (1978). Crystallographic groups of four-dimensional space. New York: John Wiley.Google Scholar
Bruijn, N. G. de (1970). Asymptotic methods in analysis, 3rd ed. Amsterdam: North-Holland.Google Scholar
Brünger, A. T. (1988). Crystallographic refinement by simulated annealing. In Crystallographic computing 4: techniques and new technologies, edited by N. W. Isaacs & M. R. Taylor, pp. 126–140. New York: Oxford University Press.Google Scholar
Brünger, A. T. (1989). A memory-efficient fast Fourier transformation algorithm for crystallographic refinement on supercomputers. Acta Cryst. A45, 42–50.Google Scholar
Brünger, A. T., Karplus, M. & Petsko, G. A. (1989). Crystallographic refinement by simulated annealing: application to crambin. Acta Cryst. A45, 50–61.Google Scholar
Brünger, A. T., Kuriyan, J. & Karplus, M. (1987). Crystallographic R factor refinement by molecular dynamics, Science, 235, 458–460.Google Scholar
Bryan, R. K., Bansal, M., Folkhard, W., Nave, C. & Marvin, D. A. (1983). Maximum-entropy calculation of the electron density at 4Å resolution of Pf1 filamentous bacteriophage. Proc. Natl Acad. Sci. USA, 80, 4728–4731.Google Scholar
Bryan, R. K. & Skilling, J. (1980). Deconvolution by maximum entropy, as illustrated by application to the jet of M87. Mon. Not. R. Astron. Soc. 191, 69–79.Google Scholar
Burch, S. F., Gull, S. F. & Skilling, J. (1983). Image restoration by a powerful maximum entropy method. Comput. Vision, Graphics Image Process. 23, 113–128.Google Scholar
Burnett, R. M. & Nordman, C. E. (1974). Optimization of the calculation of structure factors for large molecules. J. Appl. Cryst. 7, 625–627.Google Scholar
Burnside, W. (1911). Theory of groups of finite order, 2nd ed. Cambridge University Press.Google Scholar
Burrus, C. S. & Eschenbacher, P. W. (1981). An in-place, in-order prime factor FFT algorithm. IEEE Trans. Acoust. Speech Signal Process. 29, 806–817.Google Scholar
Busing, W. R. & Levy, H. A. (1961). Least squares refinement programs for the IBM 704. In Computing methods and the phase problem in X-ray crystal analysis, edited by R. Pepinsky, J. M. Robertson & J. C. Speakman, pp. 146–149. Oxford: Pergamon Press.Google Scholar
Byerly, W. E. (1893). An elementary treatise on Fourier's series and spherical, cylindrical and ellipsoidal harmonics. Boston: Ginn & Co. [Reprinted by Dover Publications, New York, 1959.]Google Scholar
Campbell, G. A. & Foster, R. M. (1948). Fourier integrals for practical applications. Princeton: Van Nostrand.Google Scholar
Carathéodory, C. (1911). Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Functionen. Rend. Circ. Mat. Palermo, 32, 193–217.Google Scholar
Carslaw, H. S. (1930). An introduction to the theory of Fourier's series and integrals. London: Macmillan. [Reprinted by Dover Publications, New York, 1950.]Google Scholar
Carslaw, H. S. & Jaeger, J. C. (1948). Operational methods in applied mathematics. Oxford University Press.Google Scholar
Cartan, H. (1961). Théorie des fonctions analytiques. Paris: Hermann.Google Scholar
Challifour, J. L. (1972). Generalized functions and Fourier analysis. Reading: Benjamin.Google Scholar
Champeney, D. C. (1973). Fourier transforms and their physical applications. New York: Academic Press.Google Scholar
Churchill, R. V. (1958). Operational mathematics, 2nd ed. New York: McGraw-Hill.Google Scholar
Cochran, W. (1948a). A critical examination of the Beevers–Lipson method of Fourier series summation. Acta Cryst. 1, 54–56.Google Scholar
Cochran, W. (1948b). The Fourier method of crystal structure analysis. Nature (London), 161, 765.Google Scholar
Cochran, W. (1948c). The Fourier method of crystal-structure analysis. Acta Cryst. 1, 138–142.Google Scholar
Cochran, W. (1948d). X-ray analysis and the method of steepest descents. Acta Cryst. 1, 273.Google Scholar
Cochran, W. (1951a). Some properties of the [F_{o} - F_{c}]-synthesis. Acta Cryst. 4, 408–411.Google Scholar
Cochran, W. (1951b). The structures of pyrimidines and purines. V. The electron distribution in adenine hydrochloride. Acta Cryst. 4, 81–92.Google Scholar
Cochran, W., Crick, F. H. C. & Vand, V. (1952). The structure of synthetic polypeptides. I. The transform of atoms on a helix. Acta Cryst. 5, 581–586.Google Scholar
Cochran, W. T., Cooley, J. W., Favin, D. L., Helms, H. D., Kaenel, R. A., Lang, W. W., Maling, G. C., Nelson, D. E., Rader, C. M. & Welch, P. D. (1967). What is the fast Fourier transform? IEEE Trans. Audio, 15, 45–55.Google Scholar
Collins, D. M. (1975). Efficiency in Fourier phase refinement for protein crystal structures. Acta Cryst. A31, 388–389.Google Scholar
Collins, D. M., Brice, M. D., Lacour, T. F. M. & Legg, M. J. (1976). Fourier phase refinement and extension by modification of electron-density maps. In Crystallographic computing techniques, edited by F. R. Ahmed, pp. 330–335. Copenhagen: Munksgaard.Google Scholar
Colman, P. M. (1974). Non-crystallographic symmetry and the sampling theorem. Z. Kristallogr. 140, 344–349.Google Scholar
Cooley, J. W. & Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301.Google Scholar
Cox, E. G. & Cruickshank, D. W. J. (1948). The accuracy of electron-density maps in X-ray structure analysis. Acta Cryst. 1, 92–93.Google Scholar
Cox, E. G., Gross, L. & Jeffrey, G. A. (1947). A Hollerith punched-card method for the evaluation of electron density in crystal structure analysis. Proc. Leeds Philos. Soc. 5, 1–13.Google Scholar
Cox, E. G., Gross, L. & Jeffrey, G. A. (1949). A Hollerith technique for computing three-dimensional differential Fourier syntheses in X-ray crystal structure analysis. Acta Cryst. 2, 351–355.Google Scholar
Cox, E. G. & Jeffrey, G. A. (1949). The use of Hollerith computing equipment in crystal structure analysis. Acta Cryst. 2, 341–343.Google Scholar
Coxeter, H. S. M. & Moser, W. O. J. (1972). Generators and relations for discrete groups, 3rd ed. Berlin: Springer-Verlag.Google Scholar
Cramér, H. (1946). Mathematical methods of statistics. Princeton University Press.Google Scholar
Crowther, R. A. (1967). A linear analysis of the non-crystallographic symmetry problem. Acta Cryst. 22, 758–764.Google Scholar
Crowther, R. A. (1969). The use of non-crystallographic symmetry for phase determination. Acta Cryst. B25, 2571–2580.Google Scholar
Crowther, R. A. (1972). The fast rotation function. In The molecular replacement method, edited by M. G. Rossmann, pp. 173–178. New York: Gordon & Breach.Google Scholar
Crowther, R. A. & Blow, D. M. (1967). A method of positioning a known molecule in an unknown crystal structure. Acta Cryst. 23, 544–548.Google Scholar
Cruickshank, D. W. J. (1949a). The accuracy of electron-density maps in X-ray analysis with special reference to dibenzyl. Acta Cryst. 2, 65–82.Google Scholar
Cruickshank, D. W. J. (1949b). The accuracy of atomic co-ordinates derived by least-squares or Fourier methods. Acta Cryst. 2, 154–157.Google Scholar
Cruickshank, D. W. J. (1950). The convergence of the least-squares and Fourier refinement methods. Acta Cryst. 3, 10–13.Google Scholar
Cruickshank, D. W. J. (1952). On the relations between Fourier and least-squares methods of structure determination. Acta Cryst. 5, 511–518.Google Scholar
Cruickshank, D. W. J. (1956). The determination of the anisotropic thermal motion of atoms in crystals. Acta Cryst. 9, 747–753.Google Scholar
Cruickshank, D. W. J. (1965a). Errors in Fourier series. In Computing methods in crystallography, edited by J. S. Rollett, pp. 107–111. Oxford: Pergamon Press.Google Scholar
Cruickshank, D. W. J. (1965b). Errors in least-squares methods. In Computing methods in crystallography, edited by J. S. Rollett, pp. 112–116. Oxford: Pergamon Press.Google Scholar
Cruickshank, D. W. J. (1970). Least-squares refinement of atomic parameters. In Crystallographic computing, edited by F. R. Ahmed, pp. 187–197. Copenhagen: Munksgaard.Google Scholar
Cruickshank, D. W. J., Pilling, D. E., Bujosa, A., Lovell, F. M. & Truter, M. R. (1961). Crystallographic calculations on the Ferranti Pegasus and mark I computers. In Computing methods and the phase problem in X-ray crystal analysis, edited by R. Pepinsky, J. M. Robertson & J. C. Speakman, pp. 32–78. Oxford: Pergamon Press.Google Scholar
Cruickshank, D. W. J. & Rollett, J. S. (1953). Electron-density errors at special positions. Acta Cryst. 6, 705–707.Google Scholar
Curtis, C. W. & Reiner, I. (1962). Representation theory of finite groups and associative algebras. New York: Wiley–Interscience.Google Scholar
Daniels, H. E. (1954). Saddlepoint approximation in statistics. Ann. Math. Stat. 25, 631–650.Google Scholar
Deisenhofer, J. & Steigemann, W. (1975). Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor at 1.5 Å resolution. Acta Cryst. B31, 238–250.Google Scholar
Diamond, R. (1971). A real-space refinement procedure for proteins. Acta Cryst. A27, 436–452.Google Scholar
Dickerson, R. E., Kendrew, J. C. & Strandberg, B. E. (1961a). The phase problem and isomorphous replacement methods in protein structures. In Computing methods and the phase problem in X-ray crystal analysis, edited by R. Pepinsky, J. M. Robertson & J. C. Speakman, pp. 236–251. Oxford: Pergamon Press.Google Scholar
Dickerson, R. E., Kendrew, J. C. & Strandberg, B. E. (1961b). The crystal structure of myoglobin: phase determination to a resolution of 2 Å by the method of isomorphous replacement. Acta Cryst. 14, 1188–1195.Google Scholar
Dietrich, H. (1972). A reconsideration of Fourier methods for the refinement of crystal structures. Acta Cryst. B28, 2807–2814.Google Scholar
Dieudonné, J. (1969). Foundations of modern analysis. New York and London: Academic Press.Google Scholar
Dieudonné, J. (1970). Treatise on analysis, Vol. II. New York and London: Academic Press.Google Scholar
Dirac, P. A. M. (1958). The principles of quantum mechanics, 4th ed. Oxford: Clarendon Press.Google Scholar
Dodson, E. J. (1981). Block diagonal least squares refinement using fast Fourier techniques. In Refinement of protein structures, compiled by P. A. Machin J. W. Campbell & M. Elder (ref. DL/SCI/R16), pp. 29–39. Warrington: SERC Daresbury Laboratory.Google Scholar
Donohue, J. & Schomaker, V. (1949). The use of punched cards in molecular structure determinations. III. Structure factor calculations of X-ray crystallography. Acta Cryst. 2, 344–347.Google Scholar
Duane, W. (1925). The calculation of the X-ray diffracting power at points in a crystal. Proc. Natl Acad. Sci. USA, 11, 489–493.Google Scholar
Dym, H. & McKean, H. P. (1972). Fourier series and integrals. New York and London: Academic Press.Google Scholar
Eklundh, J. O. (1972). A fast computer method for matrix transposing. IEEE Trans. C-21, 801–803.Google Scholar
Engel, P. (1986). Geometric crystallography. Dordrecht: Kluwer Academic Publishers.Google Scholar
Erdélyi, A. (1954). Tables of integral transforms, Vol. I. New York: McGraw-Hill.Google Scholar
Erdélyi, A. (1962). Operational calculus and generalized functions. New York: Holt, Rinehart & Winston.Google Scholar
Ewald, P. P. (1921). Die Berechnung optischer und electrostatischer Gitterpotentiale. Ann. Phys. Leipzig, 64, 253–287.Google Scholar
Ewald, P. P. (1940). X-ray diffraction by finite and imperfect crystal lattices. Proc. Phys. Soc. London, 52, 167–174.Google Scholar
Ewald, P. P. (1962). Fifty years of X-ray diffraction. Dordrecht: Kluwer Academic Publishers.Google Scholar
Farkas, D. R. (1981). Crystallographic groups and their mathematics. Rocky Mountain J. Math. 11, 511–551.Google Scholar
Fornberg, A. (1981). A vector implementation of the fast Fourier transform algorithm. Math. Comput. 36, 189–191.Google Scholar
Forsyth, J. B. & Wells, M. (1959). On an analytical approximation to the atomic scattering factor. Acta Cryst. 12, 412–415.Google Scholar
Fowler, R. H. (1936). Statistical mechanics, 2nd ed. Cambridge University Press.Google Scholar
Fowweather, F. (1955). The use of general programmes for crystallographic calculations on the Manchester University electronic digital computer (Mark II). Acta Cryst. 8, 633–637.Google Scholar
Freer, S. T., Alden, R. A., Levens, S. A. & Kraut, J. (1976). Refinement of five protein structures by constrained [F_{o} - F_{c}] Fourier methods. In Crystallographic computing techniques, edited by F. R. Ahmed, pp. 317–321. Copenhagen: Munksgaard.Google Scholar
Friedel, G. (1913). Sur les symétries cristallines que peut révéler la diffraction des rayons Röntgen. C. R. Acad. Sci. Paris, 157, 1533–1536.Google Scholar
Friedlander, F. G. (1982). Introduction to the theory of distributions. Cambridge University Press.Google Scholar
Friedlander, P. H., Love, W. & Sayre, D. (1955). Least-squares refinement at high speed. Acta Cryst. 8, 732.Google Scholar
Friedman, A. (1970). Foundations of modern analysis. New York: Holt, Rinehart & Winston. [Reprinted by Dover, New York, 1982.]Google Scholar
Frobenius, G. (1911). Über die unzerlegbaren diskreten Bewegungsgruppen. Sitzungsber. Preuss. Akad. Wiss. Berlin, 29, 654–665.Google Scholar
Gassmann, J. (1976). Improvement and extension of approximate phase sets in structure determination. In Crystallographic computing techniques, edited by F. R. Ahmed, pp. 144–154. Copenhagen: Munksgaard.Google Scholar
Gassmann, J. & Zechmeister, K. (1972). Limits of phase expansion in direct methods. Acta Cryst. A28, 270–280.Google Scholar
Gel'fand, I. M. & Shilov, G. E. (1964). Generalized functions, Vol. I. New York and London: Academic Press.Google Scholar
Gentleman, W. M. & Sande, G. (1966). Fast Fourier transforms – for fun and profit. In AFIPS Proc. 1966 Fall Joint Computer Conference, pp. 563–578. Washington, DC: Spartan Books.Google Scholar
Gillis, J. (1948a). Structure factor relations and phase determination. Acta Cryst. 1, 76–80.Google Scholar
Gillis, J. (1948b). The application of the Harker–Kasper method of phase determination. Acta Cryst. 1, 174–179.Google Scholar
Goedkoop, J. A. (1950). Remarks on the theory of phase-limiting inequalities and equalities. Acta Cryst. 3, 374–378.Google Scholar
Goldstine, H. H. (1977). A history of numerical analysis from the 16th through the 19th century. New York: Springer-Verlag.Google Scholar
Good, I. J. (1958). The interaction algorithm and practical Fourier analysis. J. R. Stat. Soc. B20, 361–372.Google Scholar
Good, I. J. (1960). Addendum [to Good (1958)]. J. R. Stat. Soc. B22, 372–375.Google Scholar
Good, I. J. (1971). The relationship between two fast Fourier transforms. IEEE Trans. C-20, 310–317.Google Scholar
Greenhalgh, D. M. S. & Jeffrey, G. A. (1950). A new punched card method of Fourier synthesis. Acta Cryst. 3, 311–312.Google Scholar
Grems, M. D. & Kasper, J. S. (1949). An improved punched-card method for crystal structure-factor calculations. Acta Cryst. 2, 347–351.Google Scholar
Grenander, U. (1952). On Toeplitz forms and stationary processes. Ark. Math. 1, 555–571.Google Scholar
Grenander, U. & Szegö, G. (1958). Toeplitz forms and their applications. Berkeley: University of California Press.Google Scholar
Guessoum, A. & Mersereau, R. M. (1986). Fast algorithms for the multidimensional discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 34, 937–943.Google Scholar
Hadamard, J. (1932). Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques. Paris: Hermann.Google Scholar
Hadamard, J. (1952). Lectures on Cauchy's problem in linear partial differential equations. New York: Dover Publications.Google Scholar
Hall, M. (1959). The theory of groups. New York: Macmillan.Google Scholar
Hardy, G. H. (1933). A theorem concerning Fourier transforms. J. London Math. Soc. 8, 227–231.Google Scholar
Harker, D. (1936). The application of the three-dimensional Patterson method and the crystal structures of proustite, Ag3AsS3, and pyrargyrite, Ag3SbS3. J. Chem. Phys. 4, 381–390.Google Scholar
Harker, D. & Kasper, J. S. (1948). Phases of Fourier coefficients directly from crystal diffraction data. Acta Cryst. 1, 70–75.Google Scholar
Harris, D. B., McClellan, J. H., Chan, D. S. K. & Schuessler, H. W. (1977). Vector radix fast Fourier transform. Rec. 1977 IEEE Internat. Conf. Acoust. Speech Signal Process. pp. 548–551.Google Scholar
Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K. & Bricogne, G. (1978). Tomato bushy stunt virus at 2.9 Ångström resolution. Nature (London), 276, 368–373.Google Scholar
Hartman, P. & Wintner, A. (1950). On the spectra of Toeplitz's matrices. Am. J. Math. 72, 359–366.Google Scholar
Hartman, P. & Wintner, A. (1954). The spectra of Toeplitz's matrices. Am. J. Math. 76, 867–882.Google Scholar
Hauptman, H. & Karle, J. (1953). Solution of the phase problem. I. The centrosymmetric crystal. ACA Monograph No. 3. Pittsburgh:Polycrystal Book Service.Google Scholar
Havighurst, R. J. (1925a). The distribution of diffracting power in sodium chloride. Proc. Natl Acad. Sci. USA, 11, 502–507.Google Scholar
Havighurst, R. J. (1925b). The distribution of diffracting power in certain crystals. Proc. Natl Acad. Sci. USA, 11, 507–512.Google Scholar
Heideman, M. T., Johnson, D. H. & Burrus, C. S. (1984). Gauss and the history of the fast Fourier transform. IEEE Acoust. Speech Signal Process. Mag. October 1984.Google Scholar
Hendrickson, W. A. & Konnert, J. H. (1980). Incorporation of stereochemical information into crystallographic refinement. In Computing in crystallography, edited by R. Diamond, S. Ramaseshan & K. Venkatesan, pp. 13.01–13.26. Bangalore: The Indian Academy of Science.Google Scholar
Herglotz, G. (1911). Über Potenzreihen mit positiven, reellen Teil im Einheitskreis. Ber. Sächs. Ges. Wiss. Leipzig, 63, 501–511.Google Scholar
Hirschman, I. I. Jr & Hughes, D. E. (1977). Extreme eigenvalues of Toeplitz operators. Lecture notes in mathematics, Vol. 618. Berlin: Springer-Verlag.Google Scholar
Hodgson, M. L., Clews, C. J. B. & Cochran, W. (1949). A punched card modification of the Beevers–Lipson method of Fourier synthesis. Acta Cryst. 2, 113–116.Google Scholar
Hoppe, W. & Gassmann, J. (1968). Phase correction, a new method to solve partially known structures. Acta Cryst. B24, 97–107.Google Scholar
Hoppe, W., Gassmann, J. & Zechmeister, K. (1970). Some automatic procedures for the solution of crystal structures with direct methods and phase correction. In Crystallographic computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 26–36. Copenhagen: Munksgaard.Google Scholar
Hörmander, L. (1963). Linear partial differential operators. Berlin: Springer-Verlag.Google Scholar
Hörmander, L. (1973). An introduction to complex analysis in several variables, 2nd ed. Amsterdam: North-Holland.Google Scholar
Huber, R., Kulka, D., Bode, W., Schwager, P., Bartels, K., Deisenhofer, J. & Steigemann, W. (1974). Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1.9Å resolution. J. Mol. Biol. 89, 73–101.Google Scholar
Hughes, E. W. (1941). The crystal structure of melamine. J. Am. Chem. Soc. 63, 1737–1752.Google Scholar
Immirzi, A. (1973). A general Fourier program for X-ray crystal-structure analysis which utilizes the Cooley–Tukey algorithm. J. Appl. Cryst. 6, 246–249.Google Scholar
Immirzi, A. (1976). Fast Fourier transform in crystallography. In Crystallographic computing techniques, edited by F. R. Ahmed, pp. 399–412. Copenhagen: Munksgaard.Google Scholar
Isaacs, N. W. (1982a). The refinement of macromolecules. In Computational crystallography, edited by D. Sayre, pp. 381–397. New York: Oxford University Press.Google Scholar
Isaacs, N. W. (1982b). Refinement techniques: use of the FFT. In Computational crystallography, edited by D. Sayre, pp. 398–408. New York: Oxford University Press.Google Scholar
Isaacs, N. W. (1984). Refinement using the fast-Fourier transform least squares algorithm. In Methods and applications in crystallographic computing, edited by S. R. Hall & T. Ashida, pp. 193–205. New York: Oxford University Press.Google Scholar
Isaacs, N. W. & Agarwal, R. C. (1978). Experience with fast Fourier least squares in the refinement of the crystal structure of rhombohedral 2-zinc insulin at 1.5 Å resolution. Acta Cryst. A34, 782–791.Google Scholar
Jack, A. (1973). Direct determination of X-ray phases for tobacco mosaic virus protein using non-crystallographic symmetry. Acta Cryst. A29, 545–554.Google Scholar
Jack, A. & Levitt, M. (1978). Refinement of large structures by simultaneous minimization of energy and R factor. Acta Cryst. A34, 931–935.Google Scholar
James, R. W. (1948a). The optical principles of the diffraction of X-rays. London: Bell.Google Scholar
James, R. W. (1948b). False detail in three-dimensional Fourier representations of crystal structures. Acta Cryst. 1, 132–134.Google Scholar
Janssen, T. (1973). Crystallographic groups. Amsterdam: North-Holland.Google Scholar
Jaynes, E. T. (1957). Information theory and statistical mechanics. Phys. Rev. 106, 620–630.Google Scholar
Jaynes, E. T. (1968). Prior probabilities. IEEE Trans. SSC, 4, 227–241.Google Scholar
Jaynes, E. T. (1983). Papers on probability, statistics and statistical physics. Dordrecht: Kluwer Academic Publishers.Google Scholar
Johnson, H. W. & Burrus, C. S. (1983). The design of optimal DFT algorithms using dynamic programming. IEEE Trans. Acoust. Speech Signal Process. 31, 378–387.Google Scholar
Jürgensen, H. (1970). Calculation with the elements of a finite group given by generators and defining relations. In Computational problems in abstract algebra, edited by J. Leech, pp. 47–57. Oxford: Pergamon Press.Google Scholar
Kac, M. (1954). Toeplitz matrices, translation kernels, and a related problem in probability theory. Duke Math. J. 21, 501–509.Google Scholar
Kac, M., Murdock, W. L. & Szegö, G. (1953). On the eigenvalues of certain Hermitian forms. J. Rat. Mech. Anal. 2, 767–800.Google Scholar
Karle, J. & Hauptman, H. (1950). The phases and magnitudes of the structure factors. Acta Cryst. 3, 181–187.Google Scholar
Katznelson, Y. (1968). An introduction to harmonic analysis. New York: John Wiley.Google Scholar
Khinchin, A. I. (1949). Mathematical foundations of statistical mechanics. New York: Dover Publications.Google Scholar
Kitz, N. & Marchington, B. (1953). A method of Fourier synthesis using a standard Hollerith senior rolling total tabulator. Acta Cryst. 6, 325–326.Google Scholar
Klug, A. (1958). Joint probability distributions of structure factors and the phase problem. Acta Cryst. 11, 515–543.Google Scholar
Klug, A., Crick, F. H. C. & Wyckoff, H. W. (1958). Diffraction by helical structures. Acta Cryst. 11, 199–213.Google Scholar
Kluyver, J. C. (1906). A local probability problem. K. Ned. Akad. Wet. Proc. 8, 341–350.Google Scholar
Kolba, D. P. & Parks, T. W. (1977). A prime factor FFT algorithm using high-speed convolution. IEEE Trans. Acoust. Speech Signal Process. 25, 281–294.Google Scholar
Konnert, J. H. (1976). A restrained-parameter structure-factor least-squares refinement procedure for large asymmetric units. Acta Cryst. A32, 614–617.Google Scholar
Konnert, J. H. & Hendrickson, W. A. (1980). A restrained-parameter thermal-factor refinement procedure. Acta Cryst. A36, 344–350.Google Scholar
Korn, D. G. & Lambiotte, J. J. Jr (1979). Computing the fast Fourier transform on a vector computer. Math. Comput. 33, 977–992.Google Scholar
Kuriyan, J., Brünger, A. T., Karplus, M. & Hendrickson, W. A. (1989). X-ray refinement of protein structures by simulated annealing: test of the method on myohemerythrin. Acta Cryst. A45, 396–409.Google Scholar
Lanczos, C. (1966). Discourse on Fourier series. Edinburgh: Oliver & Boyd.Google Scholar
Landau, H. J. & Pollack, H. O. (1961). Prolate spheroidal wave functions, Fourier analysis and uncertainty (2). Bell Syst. Tech. J. 40, 65–84.Google Scholar
Landau, H. J. & Pollack, H. O. (1962). Prolate spheroidal wave functions, Fourier analysis and uncertainty (3): the dimension of the space of essentially time- and band-limited signals. Bell Syst. Tech. J. 41, 1295–1336.Google Scholar
Lang, S. (1965). Algebra. Reading, MA: Addison-Wesley.Google Scholar
Larmor, J. (1934). The Fourier discontinuities: a chapter in historical integral calculus. Philos. Mag. 17, 668–678.Google Scholar
Laue, M. von (1936). Die aüßere Form der Kristalle in ihrem Einfluß auf die Interferenzerscheinungen an Raumgittern. Ann. Phys. (Leipzig), 26, 55–68.Google Scholar
Lavoine, J. (1963). Transformation de Fourier des pseudo-fonctions, avec tables de nouvelles transformées. Paris: Editions du CNRS.Google Scholar
Ledermann, W. (1987). Introduction to group characters, 2nd ed. Cambridge University Press.Google Scholar
Leslie, A. G. W. (1987). A reciprocal-space method for calculating a molecular envelope using the algorithm of B. C. Wang. Acta Cryst. A43, 134–136.Google Scholar
Lighthill, M. J. (1958). Introduction to Fourier analysis and generalized functions. Cambridge University Press.Google Scholar
Linnik, I. Ju. (1975). A multidimensional analogue of a limit theorem of G. Szegö. Math. USSR Izv. 9, 1323–1332.Google Scholar
Lipson, H. & Beevers, C. A. (1936). An improved numerical method of two-dimensional Fourier synthesis for crystals. Proc. Phys. Soc. London, 48, 772–780.Google Scholar
Lipson, H. & Cochran, W. (1953). The determination of crystal structures. London: Bell.Google Scholar
Lipson, H. & Cochran, W. (1968). The determination of crystal structures. Revised and enlarged edition. London: G. Bell & Sons.Google Scholar
Lipson, H. & Taylor, C. A. (1951). Optical methods in X-ray analysis. II. Fourier transforms and crystal-structure determination. Acta Cryst. 4, 458–462.Google Scholar
Lipson, H. & Taylor, C. A. (1958). Fourier transforms and X-ray diffraction. London: Bell.Google Scholar
Livesey, A. K. & Skilling, J. (1985). Maximum entropy theory. Acta Cryst. A41, 113–122.Google Scholar
Lonsdale, K. (1936). Simplified structure factor and electron density formulae for the 230 space groups of mathematical crystallography. London: Bell.Google Scholar
Lunin, V. Yu. (1985). Use of the fast differentiation algorithm for phase refinement in protein crystallography. Acta Cryst. A41, 551–556.Google Scholar
McClellan, J. H. & Rader, C. M. (1979). Number theory in digital signal processing. Englewood Cliffs: Prentice Hall.Google Scholar
MacGillavry, C. H. (1950). On the derivation of Harker–Kasper inequalities. Acta Cryst. 3, 214–217.Google Scholar
MacLane, S. (1963). Homology. Berlin: Springer-Verlag.Google Scholar
Magnus, W., Karrass, A. & Solitar, D. (1976). Combinatorial group theory: presentations of groups in terms of generators and relations, 2nd revised ed. New York: Dover Publications.Google Scholar
Magnus, W., Oberhettinger, F. & Soni, R. P. (1966). Formulas and theorems for the special functions of mathematical physics. Berlin: Springer-Verlag.Google Scholar
Main, P. & Rossmann, M. G. (1966). Relationships among structure factors due to identical molecules in different crystallographic environments. Acta Cryst. 21, 67–72.Google Scholar
Main, P. & Woolfson, M. M. (1963). Direct determination of phases by the use of linear equations between structure factors. Acta Cryst. 16, 1046–1051.Google Scholar
Mayer, S. W. & Trueblood, K. N. (1953). Three-dimensional Fourier summations on a high-speed digital computer. Acta Cryst. 6, 427.Google Scholar
Mersereau, R. & Speake, T. C. (1981). A unified treatment of Cooley–Tukey algorithms for the evaluation of the multidimensional DFT. IEEE Trans. Acoust. Speech Signal Process. 29, 1011–1018.Google Scholar
Mersereau, R. M. (1979). The processing of hexagonally sampled two-dimensional signals. Proc. IEEE, 67, 930–949.Google Scholar
Montroll, E. W., Potts, R. B. & Ward, J. C. (1963). Correlations and spontaneous magnetization of the two-dimensional Ising model. J. Math. Phys. 4, 308–322.Google Scholar
Moore, D. H. (1971). Heaviside operational calculus. An elementary foundation. New York: American Elsevier.Google Scholar
Morris, R. L. (1978). A comparative study of time efficient FFT and WFTA programs for general purpose computers. IEEE Trans. Acoust. Speech Signal Process. 26, 141–150.Google Scholar
Narayan, R. & Nityananda, R. (1982). The maximum determinant method and the maximum entropy method. Acta Cryst. A38, 122–128.Google Scholar
Natterer, F. (1986). The mathematics of computerized tomography. New York: John Wiley.Google Scholar
Navaza, J. (1985). On the maximum-entropy estimate of the electron density function. Acta Cryst. A41, 232–244.Google Scholar
Nawab, H. & McClellan, J. H. (1979). Bounds on the minimum number of data transfers in WFTA and FFT programs. IEEE Trans. Acoust. Speech Signal Process. 27, 393–398.Google Scholar
Niggli, A. (1961). Small-scale computers in X-ray crystallography. In Computing methods and the phase problem, edited by R. Pepinsky, J. M. Robertson & J. C. Speakman, pp. 12–20. Oxford: Pergamon Press.Google Scholar
Nussbaumer, H. J. (1981). Fast Fourier transform and convolution algorithms. Berlin: Springer-Verlag.Google Scholar
Nussbaumer, H. J. & Quandalle, P. (1979). Fast computation of discrete Fourier transforms using polynomial transforms. IEEE Trans. Acoust. Speech Signal Process. 27, 169–181.Google Scholar
Onsager, L. (1944). Crystal statistics. I. Two-dimensional model with an order–disorder transition. Phys. Rev. 65, 117–149.Google Scholar
Paley, R. E. A. C. & Wiener, N. (1934). Fourier transforms in the complex domain. Providence, RI: American Mathematical Society.Google Scholar
Patterson, A. L. (1934). A Fourier series method for the determination of the components of interatomic distances in crystals. Phys. Rev. 46, 372–376.Google Scholar
Patterson, A. L. (1935a). A direct method for the determination of the components of interatomic distances in crystals. Z. Kristallogr. 90, 517–542.Google Scholar
Patterson, A. L. (1935b). Tabulated data for the seventeen plane groups. Z. Kristallogr. 90, 543–554.Google Scholar
Patterson, A. L. (1959). In International tables for X-ray crystallography, Vol. II, pp. 9–10. Erratum, January 1962. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)Google Scholar
Pearson, K. (1905). The problem of the random walk. Nature (London), 72, 294, 342.Google Scholar
Pease, M. C. (1968). An adaptation of the fast Fourier transform for parallel processing. J. Assoc. Comput. Mach. 15, 252–264.Google Scholar
Pepinsky, R. (1947). An electronic computer for X-ray crystal structure analyses. J. Appl. Phys. 18, 601–604.Google Scholar
Pepinsky, R. (1952). The use of positive kernels in Fourier syntheses of crystal structures. In Computing methods and the phase problem in X-ray crystal analysis, edited by R. Pepinsky, pp. 319–338. State College: Penn. State College.Google Scholar
Pepinsky, R., van den Hende, J. & Vand, V. (1961). X-RAC and digital computing methods. In Computing methods and the phase problem, edited by R. Pepinsky, J. M. Robertson & J. C. Speakman, pp. 154–160. Oxford: Pergamon Press.Google Scholar
Pepinsky, R. & Sayre, D. (1948). Quantitative electron-density contour delineation in the electronic Fourier synthesizer for crystal structure analysis. Nature (London), 162, 22–23.Google Scholar
Petrov, V. V. (1975). Sums of independent random variables. Berlin: Springer-Verlag.Google Scholar
Pollack, H. O. & Slepian, D. (1961). Prolate spheroidal wave functions, Fourier analysis and uncertainty (1). Bell Syst. Tech. J. 40, 43–64.Google Scholar
Qurashi, M. M. (1949). Optimal conditions for convergence of steepest descents as applied to structure determination. Acta Cryst. 2, 404–409.Google Scholar
Qurashi, M. M. (1953). An analysis of the efficiency of convergence of different methods of structure determination. I. The methods of least squares and steepest descents: centrosymmetric case. Acta Cryst. 6, 577–588.Google Scholar
Qurashi, M. M. & Vand, V. (1953). Weighting of the least-squares and steepest-descents methods in the initial stages of the crystal-structure determination. Acta Cryst. 6, 341–349.Google Scholar
Rader, C. M. (1968). Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE, 56, 1107–1108.Google Scholar
Rayleigh (J. W. Strutt), Lord (1880). On the resultant of a large number of vibrations of the same pitch and arbitrary phase. Philos. Mag. 10, 73–78.Google Scholar
Rayleigh (J. W. Strutt), Lord (1899). On James Bernoulli's theorem in probabilities. Philos. Mag. 47, 246–251.Google Scholar
Rayleigh (J. W. Strutt), Lord (1905). The problem of the random walk. Nature (London), 72, 318.Google Scholar
Rayleigh (J. W. Strutt), Lord (1918). On the light emitted from a random distribution of luminous sources. Philos. Mag. 36, 429–449.Google Scholar
Rayleigh (J. W. Strutt), Lord (1919). On the problem of random flights in one, two or three dimensions. Philos. Mag. 37, 321–347.Google Scholar
Reif, F. (1965). Fundamentals of statistical and thermal physics, Appendix A.6. New York: McGraw-Hill.Google Scholar
Reijen, L. L. van (1942). Diffraction effects in Fourier syntheses and their elimination in X-ray structure investigations. Physica, 9, 461–480.Google Scholar
Rice, S. O. (1944, 1945). Mathematical analysis of random noise. Bell Syst. Tech. J. 23, 283–332 (parts I and II); 24, 46–156 (parts III and IV). [Reprinted in Selected papers on noise and stochastic processes (1954), edited by N. Wax, pp. 133–294. New York: Dover Publications.]Google Scholar
Riesz, M. (1938). L'intégrale de Riemann–Liouville et le problème de Cauchy pour l'équation des ondes. Bull. Soc. Math. Fr. 66, 153–170.Google Scholar
Riesz, M. (1949). L'intégrale de Riemann–Liouville et le problème de Cauchy. Acta Math. 81, 1–223.Google Scholar
Rivard, G. E. (1977). Direct fast Fourier transform of bivariate functions. IEEE Trans. Acoust. Speech Signal Process. 25, 250–252.Google Scholar
Robertson, J. M. (1932). A simple harmonic continuous calculating machine. Philos. Mag. 13, 413–419.Google Scholar
Robertson, J. M. (1935). An X-ray study of the structure of phthalocyanines. Part I. The metal-free, nickel, copper, and platinum compounds. J. Chem. Soc. pp. 615–621.Google Scholar
Robertson, J. M. (1936a). Numerical and mechanical methods in double Fourier synthesis. Philos. Mag. 21, 176–187.Google Scholar
Robertson, J. M. (1936b). Calculation of structure factors and summation of Fourier series in crystal analysis: non-centrosymmetrical projections. Nature (London), 138, 683–684.Google Scholar
Robertson, J. M. (1936c). An X-ray study of the phthalocyanines. Part II. Quantitative structure determination of the metal-free compound. J. Chem. Soc. pp. 1195–1209.Google Scholar
Robertson, J. M. (1937). X-ray analysis and application of Fourier series methods to molecular structures. Phys. Soc. Rep. Prog. Phys. 4, 332–367.Google Scholar
Robertson, J. M. (1954). A fast digital computer for Fourier operations. Acta Cryst. 7, 817–822.Google Scholar
Robertson, J. M. (1955). Some properties of Fourier strips with applications to the digital computer. Acta Cryst. 8, 286–288.Google Scholar
Robertson, J. M. (1961). A digital mechanical computer for Fourier operations. In Computing methods and the phase problem, edited by R. Pepinsky, J. M. Robertson & J. C. Speakman, pp. 21–24. Oxford: Pergamon Press.Google Scholar
Rollett, J. S. (1965). Structure factor routines. In Computing methods in crystallography, edited by J. S. Rollett, pp. 38–46. Oxford: Pergamon Press,Google Scholar
Rollett, J. S. (1970). Least-squares procedures in crystal structure analysis. In Crystallographic computing, edited by F. R. Ahmed, pp. 167–181. Copenhagen: Munksgaard.Google Scholar
Rollett, J. S. & Davies, D. R. (1955). The calculation of structure factors for centrosymmetric monoclinic systems with anisotropic atomic vibration. Acta Cryst. 8, 125–128.Google Scholar
Rossmann, M. G. & Blow, D. M. (1962). The detection of sub-units within the crystallographic asymmetric unit. Acta Cryst. 15, 24–31.Google Scholar
Rossmann, M. G. & Blow, D. M. (1963). Determination of phases by the conditions of non-crystallographic symmetry. Acta Cryst. 16, 39–45.Google Scholar
Sayre, D. (1951). The calculation of structure factors by Fourier summation. Acta Cryst. 4, 362–367.Google Scholar
Sayre, D. (1952a). The squaring method: a new method for phase determination. Acta Cryst. 5, 60–65.Google Scholar
Sayre, D. (1952b). Some implications of a theorem due to Shannon. Acta Cryst. 5, 843.Google Scholar
Sayre, D. (1952c). The Fourier transform in X-ray crystal analysis. In Computing methods and the phase problem in X-ray crystal analysis, edited by R. Pepinsky, pp. 361–390. State College: Penn. State University.Google Scholar
Sayre, D. (1972). On least-squares refinement of the phases of crystallographic structure factors. Acta Cryst. A28, 210–212.Google Scholar
Sayre, D. (1974). Least-squares phase refinement. II. High-resolution phasing of a small protein. Acta Cryst. A30, 180–184.Google Scholar
Sayre, D. (1980). Phase extension and refinement using convolutional and related equation systems. In Theory and practice of direct methods in crystallography, edited by M. F. C. Ladd & R. A. Palmer, pp. 271–286. New York and London: Plenum.Google Scholar
Schroeder, M. R. (1986). Number theory in science and communication, 2nd ed. Berlin: Springer-Verlag.Google Scholar
Schwartz, L. (1965). Mathematics for the physical sciences. Paris: Hermann, and Reading: Addison-Wesley.Google Scholar
Schwartz, L. (1966). Théorie des distributions. Paris: Hermann.Google Scholar
Schwarzenberger, R. L. E. (1980). N-dimensional crystallography. Research notes in mathematics, Vol. 41. London: Pitman.Google Scholar
Scott, W. R. (1964). Group theory. Englewood Cliffs: Prentice-Hall. [Reprinted by Dover, New York, 1987.]Google Scholar
Shaffer, P. A. Jr, Schomaker, V. & Pauling, L. (1946a). The use of punched cards in molecular structure determinations. I. Crystal structure calculations. J. Chem. Phys. 14, 648–658.Google Scholar
Shaffer, P. A. Jr, Schomaker, V. & Pauling, L. (1946b). The use of punched cards in molecular structure determinations. II. Electron diffraction calculations. J. Chem. Phys. 14, 659–664.Google Scholar
Shannon, C. E. (1949). Communication in the presence of noise. Proc. Inst. Radio Eng. NY, 37, 10–21.Google Scholar
Shenefelt, M. (1988). Group invariant finite Fourier transforms. PhD thesis, Graduate Centre of the City University of New York.Google Scholar
Shmueli, U. & Weiss, G. H. (1985). Exact joint probability distribution for centrosymmetric structure factors. Derivation and application to the [\Sigma_{1}] relationship in the space group [P\bar{1}]. Acta Cryst. A41, 401–408.Google Scholar
Shmueli, U. & Weiss, G. H. (1986). Exact joint distribution of [E_{\bf h}], [E_{\bf k}] and [E_{\bf h+k}], and the probability for the positive sign of the triple product in the space group [P{\bar {1}}]. Acta Cryst. A42, 240–246.Google Scholar
Shmueli, U. & Weiss, G. H. (1987). Exact random-walk models in crystallographic statistics. III. Distributions of [|E|] for space groups of low symmetry. Acta Cryst. A43, 93–98.Google Scholar
Shmueli, U. & Weiss, G. H. (1988). Exact random-walk models in crystallographic statistics. IV. P.d.f.'s of [|E|] allowing for atoms in special positions. Acta Cryst. A44, 413–417.Google Scholar
Shmueli, U., Weiss, G. H. & Kiefer, J. E. (1985). Exact random-walk models in crystallographic statistics. II. The bicentric distribution for the space group [P{\bar {1}}]. Acta Cryst. A41, 55–59.Google Scholar
Shmueli, U., Weiss, G. H., Kiefer, J. E. & Wilson, A. J. C. (1984). Exact random-walk models in crystallographic statistics. I. Space groups [P{\bar {\it 1}}] and P1. Acta Cryst. A40, 651–660.Google Scholar
Shoemaker, D. P., Donohue, J., Schomaker, V. & Corey, R. B. (1950). The crystal structure of LS-threonine. J. Am. Chem. Soc. 72, 2328–2349.Google Scholar
Shoemaker, D. P. & Sly, W. G. (1961). Computer programming strategy for crystallographic Fourier synthesis: program MIFR1. Acta Cryst. 14, 552.Google Scholar
Shohat, J. A. & Tamarkin, J. D. (1943). The problem of moments. Mathematical surveys, No. 1. New York: American Mathematical Society.Google Scholar
Silverman, H. F. (1977). An introduction to programming the Winograd Fourier transform algorithm (WFTA). IEEE Trans. Acoust. Speech Signal Process. 25, 152–165.Google Scholar
Singleton, R. C. (1969). An algorithm for computing the mixed radix fast Fourier transform. IEEE Trans. AU, 17, 93–103.Google Scholar
Sneddon, I. N. (1951). Fourier transforms. New York: McGraw-Hill.Google Scholar
Sneddon, I. N. (1972). The use of integral transforms. New York: McGraw-Hill.Google Scholar
Sparks, R. A., Prosen, R. J., Kruse, F. H. & Trueblood, K. N. (1956). Crystallographic calculations on the high-speed digital computer SWAC. Acta Cryst. 9, 350–358.Google Scholar
Sprecher, D. A. (1970). Elements of real analysis. New York: Academic Press. [Reprinted by Dover Publications, New York, 1987.]Google Scholar
Stout, G. H. & Jensen, L. H. (1968). X-ray structure determination. A practical guide. New York: Macmillan.Google Scholar
Suryan, G. (1957). An analogue computer for double Fourier series summation for X-ray crystal-structure analysis. Acta Cryst. 10, 82–84.Google Scholar
Sussman, J. L., Holbrook, S. R., Church, G. M. & Kim, S.-H. (1977). A structure-factor least-squares refinement procedure for macromolecular structures using constrained and restrained parameters. Acta Cryst. A33, 800–804.Google Scholar
Swartzrauber, P. N. (1984). FFT algorithms for vector computers. Parallel Comput. 1, 45–63.Google Scholar
Szegö, G. (1915). Ein Grenzwertsatz uber die Toeplitzschen Determinanten einer reellen positiven Funktion. Math. Ann. 76, 490–503.Google Scholar
Szegö, G. (1920). Beitrage zur Theorie der Toeplitzchen Formen (Erste Mitteilung). Math. Z. 6, 167–202.Google Scholar
Szegö, G. (1952). On certain Hermitian forms associated with the Fourier series of a positive function. Comm. Sém. Mat., Univ. Lund (Suppl. dedicated to Marcel Riesz), pp. 228–238.Google Scholar
Takano, T. (1977a). Structure of myoglobin refined at 2.0 Å resolution. I. Crystallographic refinement of metmyoglobin from sperm whale. J. Mol. Biol. 110, 537–568.Google Scholar
Takano, T. (1977b). Structure of myoglobin refined at 2.0 Å resolution. II. Structure of deoxymyoglobin from sperm whale. J. Mol. Biol. 110, 569–584.Google Scholar
Temperton, C. (1983a). Self-sorting mixed-radix fast Fourier transforms. J. Comput. Phys. 52, 1–23.Google Scholar
Temperton, C. (1983b). A note on the prime factor FFT algorithm. J. Comput. Phys. 52, 198–204.Google Scholar
Temperton, C. (1983c). Fast mixed-radix real Fourier transforms. J. Comput. Phys. 52, 340–350.Google Scholar
Temperton, C. (1985). Implementation of a self-sorting in place prime factor FFT algorithm. J. Comput. Phys. 58, 283–299.Google Scholar
Ten Eyck, L. F. (1973). Crystallographic fast Fourier transforms. Acta Cryst. A29, 183–191.Google Scholar
Ten Eyck, L. F. (1977). Efficient structure factor calculation for large molecules by fast Fourier transform. Acta Cryst. A33, 486–492.Google Scholar
Ten Eyck, L. F. (1985). Fast Fourier transform calculation of electron density maps. In Diffraction methods for biological macromolecules (Methods in enzymology, Vol. 115), edited by H. Wyckoff, C. H. W. Hirs & S. N. Timasheff, pp. 324–337. New York: Academic Press.Google Scholar
Titchmarsh, E. C. (1922). Hankel transforms. Proc. Camb. Philos. Soc. 21, 463–473.Google Scholar
Titchmarsh, E. C. (1948). Introduction to the theory of Fourier integrals. Oxford: Clarendon Press.Google Scholar
Toeplitz, O. (1907). Zur Theorie der quadratischen Formen von unendlichvielen Variablen. Nachr. der Kgl. Ges. Wiss. Göttingen, Math. Phys. Kl. pp. 489–506.Google Scholar
Toeplitz, O. (1910). Zur Transformation der Scharen bilinearer Formen von unendlichvielen Veränderlichen. Nachr. der Kgl. Ges. Wiss. Göttingen, Math. Phys. Kl. pp. 110–115.Google Scholar
Toeplitz, O. (1911a). Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen. I. Teil: Theorie der L-formen. Math. Ann. 70, 351–376.Google Scholar
Toeplitz, O. (1911b). Über die Fouriersche Entwicklung positiver Funktionen. Rend. Circ. Mat. Palermo, 32, 191–192.Google Scholar
Tolimieri, R. (1985). The algebra of the finite Fourier transform and coding theory. Trans. Am. Math. Soc. 287, 253–273.Google Scholar
Tolimieri, R., An, M. & Lu, C. (1989). Algorithms for discrete Fourier transform and convolution. New York: Springer-Verlag.Google Scholar
Tolstov, G. P. (1962). Fourier series. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Trèves, F. (1967). Topological vector spaces, distributions, and kernels. New York and London: Academic Press.Google Scholar
Tronrud, D. E., Ten Eyck, L. F. & Matthews, B. W. (1987). An efficient general-purpose least-squares refinement program for macromolecular structures. Acta Cryst. A43, 489–501.Google Scholar
Trueblood, K. N. (1956). Symmetry transformations of general anisotropic temperature factors. Acta Cryst. 9, 359–361.Google Scholar
Truter, M. R. (1954). Refinement of a non-centrosymmetrical structure: sodium nitrite. Acta Cryst. 7, 73–77.Google Scholar
Uhrich, M. L. (1969). Fast Fourier transforms without sorting. IEEE Trans. AU, 17, 170–172.Google Scholar
Van der Pol, B. & Bremmer, H. (1955). Operational calculus, 2nd ed. Cambridge University Press.Google Scholar
Vand, V. (1948). Method of steepest descents: improved formula for X-ray analysis. Nature (London), 161, 600–601.Google Scholar
Vand, V. (1951). A simplified method of steepest descents. Acta Cryst. 4, 285–286.Google Scholar
Vand, V., Eiland, P. F. & Pepinsky, R. (1957). Analytical representation of atomic scattering factors. Acta Cryst. 10, 303–306.Google Scholar
Wang, B. C. (1985). Resolution of phase ambiguity in macromolecular crystallography. In Diffraction methods for biological macromolecules (Methods in enzymology, Vol. 115), edited by H. Wyckoff, C. H. W. Hirs & S. N. Timasheff, pp. 90–112. New York: Academic Press.Google Scholar
Warren, B. & Bragg, W. L. (1929). The structure of diopside, CaMg(SiO3)2. Z. Kristallogr. 69, 168–193.Google Scholar
Warren, B. E. (1969). X-ray diffraction. Reading: Addison-Wesley.Google Scholar
Warren, B. E. & Gingrich, N. S. (1934). Fourier integral analysis of X-ray powder patterns. Phys. Rev. 46, 368–372.Google Scholar
Waser, J. (1955a). Symmetry relations between structure factors. Acta Cryst. 8, 595.Google Scholar
Waser, J. (1955b). The anisotropic temperature factor in triclinic coordinates. Acta Cryst. 8, 731.Google Scholar
Waser, J. & Schomaker, V. (1953). The Fourier inversion of diffraction data. Rev. Mod. Phys. 25, 671–690.Google Scholar
Watson, G. L. (1970). Integral quadratic forms. Cambridge University Press.Google Scholar
Watson, G. N. (1944). A treatise on the theory of Bessel functions, 2nd ed. Cambridge University Press.Google Scholar
Wells, M. (1965). Computational aspects of space-group symmetry. Acta Cryst. 19, 173–179.Google Scholar
Weyl, H. (1931). The theory of groups and quantum mechanics. New York: Dutton. [Reprinted by Dover Publications, New York, 1950.]Google Scholar
Whittaker, E. J. W. (1948). The evaluation of Fourier transforms by a Fourier synthesis method. Acta Cryst. 1, 165–167.Google Scholar
Whittaker, E. T. (1915). On the functions which are represented by the expansions of the interpolation-theory. Proc. R. Soc. (Edinburgh), 35, 181–194.Google Scholar
Whittaker, E. T. (1928). Oliver Heaviside. Bull. Calcutta Math. Soc. 20, 199–220. [Reprinted in Moore (1971).]Google Scholar
Whittaker, E. T. & Robinson, G. (1944). The calculus of observations. London: Blackie.Google Scholar
Whittaker, E. T. & Watson, G. N. (1927). A course of modern analysis, 4th ed. Cambridge University Press.Google Scholar
Widom, H. (1960). A theorem on translation kernels in n dimensions. Trans. Am. Math. Soc. 94, 170–180.Google Scholar
Widom, H. (1965). Toeplitz matrices. In Studies in real and complex analysis, edited by I. I. Hirschmann Jr, pp. 179–209. MAA studies in mathematics, Vol. 3. Englewood Cliffs: Prentice-Hall.Google Scholar
Widom, H. (1975). Asymptotic inversion of convolution operators. Publ. Math. IHES, 44, 191–240.Google Scholar
Wiener, N. (1933). The Fourier integral and certain of its applications. Cambridge University Press. [Reprinted by Dover Publications, New York, 1959.]Google Scholar
Wilkins, S. W., Varghese, J. N. & Lehmann, M. S. (1983). Statistical geometry. I. A self-consistent approach to the crystallographic inversion problem based on information theory. Acta Cryst. A39, 47–60.Google Scholar
Winograd, S. (1976). On computing the discrete Fourier transform. Proc. Natl Acad. Sci. USA, 73, 1005–1006.Google Scholar
Winograd, S. (1977). Some bilinear forms whose multiplicative complexity depends on the field of constants. Math. Syst. Theor. 10, 169–180.Google Scholar
Winograd, S. (1978). On computing the discrete Fourier transform. Math. Comput. 32, 175–199.Google Scholar
Winograd, S. (1980). Arithmetic complexity of computations. CBMS-NST Regional Conf. Series Appl. Math, Publ. No. 33. Philadelphia: SIAM Publications.Google Scholar
Wolf, J. A. (1967). Spaces of constant curvature. New York: McGraw-Hill.Google Scholar
Wondratschek, H. (2005). Introduction to space-group symmetry. In International tables for crystallography, Vol. A. Space-group symmetry, edited by Th. Hahn, Part 8. Heidelberg: Springer.Google Scholar
Yosida, K. (1965). Functional analysis. Berlin: Springer-Verlag.Google Scholar
Zachariasen, W. H. (1945). Theory of X-ray diffraction in crystals. New York: John Wiley.Google Scholar
Zassenhaus, H. (1948). Über eine Algorithmus zur Bestimmung der Raumgruppen. Commun. Helv. Math. 21, 117–141.Google Scholar
Zemanian, A. H. (1965). Distribution theory and transform analysis. New York: McGraw-Hill.Google Scholar
Zemanian, A. H. (1968). Generalised integral transformations. New York: Interscience.Google Scholar
Zygmund, A. (1959). Trigonometric series, Vols. 1 and 2. Cambridge University Press.Google Scholar
Zygmund, A. (1976). Notes on the history of Fourier series. In Studies in harmonic analysis, edited by J. M. Ash, pp. 1–19. MAA studies in mathematics, Vol. 13. The Mathematical Association of America.Google Scholar