International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B, ch. 1.3, pp. 25-98   | 1 | 2 |
doi: 10.1107/97809553602060000551

Chapter 1.3. Fourier transforms in crystallography: theory, algorithms and applications

G. Bricognea

aMRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England, and LURE, Bâtiment 209D, Université Paris-Sud, 91405 Orsay, France

References

Agarwal, R. C. (1978). A new least-squares refinement technique based on the fast Fourier transform algorithm. Acta Cryst. A34, 791–809.
Agarwal, R. C. (1980). The refinement of crystal structure by fast Fourier least-squares. In Computing in crystallography, edited by R. Diamond, S. Ramaseshan & K. Venkatesan, pp. 18.01–18.13. Bangalore: The Indian Academy of Science.
Agarwal, R. C. (1981). New results on fast Fourier least-squares refinement technique. In Refinement of protein structures, compiled by P. A. Machin, J. W. Campbell & M. Elder (ref. DL/SCI/R16), pp. 24–28. Warrington: SERC Daresbury Laboratory.
Agarwal, R. C. & Cooley, J. W. (1986). Fourier transform and convolution subroutines for the IBM 3090 Vector facility. IBM J. Res. Dev. 30, 145–162.
Agarwal, R. C. & Cooley, J. W. (1987). Vectorized mixed radix discrete Fourier transform algorithms. Proc. IEEE, 75, 1283–1292.
Agarwal, R. C., Lifchitz, A. & Dodson, E. J. (1981). Appendix (pp. 36–38) to Dodson (1981).
Ahlfors, L. V. (1966). Complex analysis. New York: McGraw-Hill.
Ahmed, F. R. & Barnes, W. H. (1958). Generalized programmes for crystallographic computations. Acta Cryst. 11, 669–671.
Ahmed, F. R. & Cruickshank, D. W. J. (1953a). A refinement of the crystal structure analysis of oxalic acid dihydrate. Acta Cryst. 6, 385–392.
Ahmed, F. R. & Cruickshank, D. W. J. (1953b). Crystallographic calculations on the Manchester University electronic digital computer (Mark II). Acta Cryst. 6, 765–769.
Akhiezer, N. I. (1965). The classical moment problem. Edinburgh and London: Oliver & Boyd.
Alston, N. A. & West, J. (1929). The structure of topaz, [Al(F,OH)]2SiO4. Z. Kristallogr. 69, 149–167.
Apostol, T. M. (1976). Introduction to analytic number theory. New York: Springer-Verlag.
Arnold, H. (2005). Transformations in crystallography. In International Tables for Crystallography, Vol. A. Space-group symmetry, edited by Th. Hahn, Chapter 5.1. Heidelberg: Springer.
Artin, E. (1944). Galois theory. Notre Dame University Press.
Ascher, E. & Janner, A. (1965). Algebraic aspects of crystallography. I. Space groups as extensions. Helv. Phys. Acta, 38, 551–572.
Ascher, E. & Janner, A. (1968). Algebraic aspects of crystallography. II. Non-primitive translations in space groups. Commun. Math. Phys. 11, 138–167.
Ash, J. M. (1976). Multiple trigonometric series. In Studies in harmonic analysis, edited by J. M. Ash, pp. 76–96. MAA studies in mathematics, Vol. 13. The Mathematical Association of America.
Auslander, L. (1965). An account of the theory of crystallographic groups. Proc. Am. Math. Soc. 16, 1230–1236.
Auslander, L., Feig, E. & Winograd, S. (1982). New algorithms for evaluating the 3-dimensional discrete Fourier transform. In Computational crystallography, edited by D. Sayre, pp. 451–461. New York: Oxford University Press.
Auslander, L., Feig, E. & Winograd, S. (1983). New algorithms for the multidimensional discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 31, 388–403.
Auslander, L., Feig, E. & Winograd, S. (1984). Abelian semi-simple algebras and algorithms for the discrete Fourier transform. Adv. Appl. Math. 5, 31–55.
Auslander, L., Johnson, R. W. & Vulis, M. (1988). Evaluating finite Fourier transforms that respect group symmetries. Acta Cryst. A44, 467–478.
Auslander, L. & Shenefelt, M. (1987). Fourier transforms that respect crystallographic symmetries. IBM J. Res. Dev. 31, 213–223.
Auslander, L. & Tolimieri, R. (1979). Is computing with the finite Fourier transform pure or applied mathematics? Bull. Am. Math. Soc. 1, 847–897.
Auslander, L. & Tolimieri, R. (1985). Ring structure and the Fourier transform. Math. Intelligencer, 7, 49–54.
Auslander, L., Tolimieri, R. & Winograd, S. (1982). Hecke's theorem in quadratic reciprocity, finite nilpotent groups and the Cooley–Tukey algorithm. Adv. Math. 43, 122–172.
Ayoub, R. (1963). An introduction to the analytic theory of numbers. Providence, RI: American Mathematical Society.
Baker, E. N. & Dodson, E. J. (1980). Crystallographic refinement of the structure of actinidin at 1.7 Å resolution by fast Fourier least-squares methods. Acta Cryst. A36, 559–572.
Bantz, D. & Zwick, M. (1974). The use of symmetry with the fast Fourier algorithm. Acta Cryst. A30, 257–260.
Barakat, R. (1974). First-order statistics of combined random sinusoidal waves with applications to laser speckle patterns. Opt. Acta, 21, 903–921.
Barrett, A. N. & Zwick, M. (1971). A method for the extension and refinement of crystallographic protein phases utilizing the fast Fourier transform. Acta Cryst. A27, 6–11.
Beevers, C. A. (1952). Fourier strips at a 3° interval. Acta Cryst. 5, 670–673.
Beevers, C. A. & Lipson, H. (1934). A rapid method for the summation of a two-dimensional Fourier series. Philos. Mag. 17, 855–859.
Beevers, C. A. & Lipson, H. (1936). A numerical method for two-dimensional Fourier synthesis. Nature (London), 137, 825–826.
Beevers, C. A. & Lipson, H. (1952). The use of Fourier strips for calculating structure factors. Acta Cryst. 5, 673–675.
Bellman, R. (1958). Dynamic programming and stochastic control processes. Inf. Control, 1, 228–239.
Bennett, J. M. & Kendrew, J. C. (1952). The computation of Fourier syntheses with a digital electronic calculating machine. Acta Cryst. 5, 109–116.
Berberian, S. K. (1962). Measure and integration. New York: Macmillan. [Reprinted by Chelsea, New York, 1965.]
Bertaut, E. F. (1952). L'énergie électrostatique de réseaux ioniques. J. Phys. Radium, 13, 499–505.
Bertaut, E. F. (1955a). La méthode statistique en cristallographie. I. Acta Cryst. 8, 537–543.
Bertaut, E. F. (1955b). La méthode statistique en cristallographie. II. Quelques applications. Acta Cryst. 8, 544–548.
Bertaut, E. F. (1955c). Fonction de répartition: application à l'approache directe des structures. Acta Cryst. 8, 823–832.
Bertaut, E. F. (1956a). Les groupes de translation non primitifs et la méthode statistique. Acta Cryst. 9, 322.
Bertaut, E. F. (1956b). Tables de linéarisation des produits et puissances des facteurs de structure. Acta Cryst. 9, 322–323.
Bertaut, E. F. (1956c). Algèbre des facteurs de structure. Acta Cryst. 9, 769–770.
Bertaut, E. F. (1959a). IV. Algèbre des facteurs de structure. Acta Cryst. 12, 541–549.
Bertaut, E. F. (1959b). V. Algèbre des facteurs de structure. Acta Cryst. 12, 570–574.
Bertaut, E. F. & Waser, J. (1957). Structure factor algebra. II. Acta Cryst. 10, 606–607.
Bhattacharya, R. N. & Rao, R. R. (1976). Normal approximation and asymptotic expansions. New York: John Wiley.
Bieberbach, L. (1911). Über die Bewegungsgruppen der Euklidischen Raume I. Math. Ann. 70, 297–336.
Bieberbach, L. (1912). Über die Bewegungsgruppen der Euklidischen Raume II. Math. Ann. 72, 400–412.
Bienenstock, A. & Ewald, P. P. (1962). Symmetry of Fourier space. Acta Cryst. 15, 1253–1261.
Blahut, R. E. (1985). Fast algorithms for digital signal processing. Reading: Addison-Wesley.
Bleistein, N. & Handelsman, R. A. (1986). Asymptotic expansions of integrals. New York: Dover Publications.
Bloomer, A. C., Champness, J. N., Bricogne, G., Staden, R. & Klug, A. (1978). Protein disk of tobacco mosaic virus at 2.8 Ångström resolution showing the interactions within and between subunits. Nature (London), 276, 362–368.
Blow, D. M. & Crick, F. H. C. (1959). The treatment of errors in the isomorphous replacement method. Acta Cryst. 12, 794–802.
Bochner, S. (1932). Vorlesungen über Fouriersche Integrale. Leipzig: Akademische Verlagsgesellschaft.
Bochner, S. (1959). Lectures on Fourier integrals. Translated from Bochner (1932) by M. Tenenbaum & H. Pollard. Princeton University Press.
Bode, W. & Schwager, P. (1975). The refined crystal structure of bovine β-trypsin at 1.8Å resolution. II. Crystallographic refinement, calcium-binding site, benzamidine binding site and active site at pH 7.0. J. Mol. Biol. 98, 693–717.
Bondot, P. (1971). Application de la transformée de Fourier performante aux calculs cristallographiques. Acta Cryst. A27, 492–494.
Booth, A. D. (1945a). Two new modifications of the Fourier method of X-ray structure analysis. Trans. Faraday Soc. 41, 434–438.
Booth, A. D. (1945b). An expression for following the process of refinement in X-ray structure analysis using Fourier series. Philos. Mag. 36, 609–615.
Booth, A. D. (1945c). Accuracy of atomic co-ordinates derived from Fourier synthesis. Nature (London), 156, 51–52.
Booth, A. D. (1946a). A differential Fourier method for refining atomic parameters in crystal structure analysis. Trans. Faraday Soc. 42, 444–448.
Booth, A. D. (1946b). The simultaneous differential refinement of co-ordinates and phase angles in X-ray Fourier synthesis. Trans. Faraday Soc. 42, 617–619.
Booth, A. D. (1946c). The accuracy of atomic co-ordinates derived from Fourier series in X-ray structure analysis. Proc. R. Soc. London Ser. A, 188, 77–92.
Booth, A. D. (1947a). The accuracy of atomic co-ordinates derived from Fourier series in X-ray structure analysis. III. Proc. R. Soc. London Ser. A, 190, 482–489.
Booth, A. D. (1947b). The accuracy of atomic co-ordinates derived from Fourier series in X-ray structure analysis. IV. The two-dimensional projection of oxalic acid. Proc. R. Soc. London Ser. A, 190, 490–496.
Booth, A. D. (1947c). A new refinement technique for X-ray structure analysis. J. Chem. Phys. 15, 415–416.
Booth, A. D. (1947d). Application of the method of steepest descents to X-ray structure analysis. Nature (London), 160, 196.
Booth, A. D. (1948a). A new Fourier refinement technique. Nature (London), 161, 765–766.
Booth, A. D. (1948b). Fourier technique in X-ray organic structure analysis. Cambridge University Press.
Booth, A. D. (1949). The refinement of atomic parameters by the technique known in X-ray crystallography as `the method of steepest descents'. Proc. R. Soc. London Ser. A, 197, 336–355.
Born, M. & Huang, K. (1954). Dynamical theory of crystal lattices. Oxford University Press.
Bracewell, R. N. (1986). The Fourier transform and its applications, 2nd ed., revised. New York: McGraw-Hill.
Bragg, W. H. (1915). X-rays and crystal structure. (Bakerian Lecture.) Philos. Trans. R. Soc. London Ser. A, 215, 253–274.
Bragg, W. L. (1929). Determination of parameters in crystal structures by means of Fourier series. Proc. R. Soc. London Ser. A, 123, 537–559.
Bragg, W. L. (1975). The development of X-ray analysis, edited by D. C. Phillips & H. Lipson. London: Bell.
Bragg, W. L. & Lipson, H. (1936). The employment of contoured graphs of structure-factor in crystal analysis. Z. Kristallogr. 95, 323–337.
Bragg, W. L. & West, J. (1929). A technique for the X-ray examination of crystal structures with many parameters. Z. Kristallogr. 69, 118–148.
Bragg, W. L. & West, J. (1930). A note on the representation of crystal structure by Fourier series. Philos. Mag. 10, 823–841.
Bremermann, H. (1965). Distributions, complex variables, and Fourier transforms. Reading: Addison-Wesley.
Bricogne, G. (1974). Geometric sources of redundancy in intensity data and their use for phase determination. Acta Cryst. A30, 395–405.
Bricogne, G. (1976). Methods and programs for direct-space exploitation of geometric redundancies. Acta Cryst. A32, 832–847.
Bricogne, G. (1982). Generalised density modification methods. In Computational crystallography, edited by D. Sayre, pp. 258–264. New York: Oxford University Press.
Bricogne, G. (1984). Maximum entropy and the foundations of direct methods. Acta Cryst. A40, 410–445.
Bricogne, G. (1988). A Bayesian statistical theory of the phase problem. I. A multichannel maximum entropy formalism for constructing generalised joint probability distributions of structure factors. Acta Cryst. A44, 517–545.
Bricogne, G. & Tolimieri, R. (1990). Two-dimensional FFT algorithms on data admitting 90°-rotational symmetry. In Signal processing theory, edited by L. Auslander, T. Kailath & S. Mitter, pp. 25–35. New York: Springer-Verlag.
Brigham, E. O. (1988). The fast Fourier transform and its applications. Englewood Cliffs: Prentice-Hall.
Brill, R., Grimm, H., Hermann, C. & Peters, C. (1939). Anwendung der röntgenographischen Fourieranalyse auf Fragen den chemischen Bindung. Ann. Phys. (Leipzig), 34, 393–445.
Britten, P. L. & Collins, D. M. (1982). Information theory as a basis for the maximum determinant. Acta Cryst. A38, 129–132.
Brown, H. (1969). An algorithm for the determination of space groups. Math. Comput. 23, 499–514.
Brown, H., Bülow, R., Neubüser, J., Wondratschek, H. & Zassenhaus, H. (1978). Crystallographic groups of four-dimensional space. New York: John Wiley.
Bruijn, N. G. de (1970). Asymptotic methods in analysis, 3rd ed. Amsterdam: North-Holland.
Brünger, A. T. (1988). Crystallographic refinement by simulated annealing. In Crystallographic computing 4: techniques and new technologies, edited by N. W. Isaacs & M. R. Taylor, pp. 126–140. New York: Oxford University Press.
Brünger, A. T. (1989). A memory-efficient fast Fourier transformation algorithm for crystallographic refinement on supercomputers. Acta Cryst. A45, 42–50.
Brünger, A. T., Karplus, M. & Petsko, G. A. (1989). Crystallographic refinement by simulated annealing: application to crambin. Acta Cryst. A45, 50–61.
Brünger, A. T., Kuriyan, J. & Karplus, M. (1987). Crystallographic R factor refinement by molecular dynamics, Science, 235, 458–460.
Bryan, R. K., Bansal, M., Folkhard, W., Nave, C. & Marvin, D. A. (1983). Maximum-entropy calculation of the electron density at 4Å resolution of Pf1 filamentous bacteriophage. Proc. Natl Acad. Sci. USA, 80, 4728–4731.
Bryan, R. K. & Skilling, J. (1980). Deconvolution by maximum entropy, as illustrated by application to the jet of M87. Mon. Not. R. Astron. Soc. 191, 69–79.
Burch, S. F., Gull, S. F. & Skilling, J. (1983). Image restoration by a powerful maximum entropy method. Comput. Vision, Graphics Image Process. 23, 113–128.
Burnett, R. M. & Nordman, C. E. (1974). Optimization of the calculation of structure factors for large molecules. J. Appl. Cryst. 7, 625–627.
Burnside, W. (1911). Theory of groups of finite order, 2nd ed. Cambridge University Press.
Burrus, C. S. & Eschenbacher, P. W. (1981). An in-place, in-order prime factor FFT algorithm. IEEE Trans. Acoust. Speech Signal Process. 29, 806–817.
Busing, W. R. & Levy, H. A. (1961). Least squares refinement programs for the IBM 704. In Computing methods and the phase problem in X-ray crystal analysis, edited by R. Pepinsky, J. M. Robertson & J. C. Speakman, pp. 146–149. Oxford: Pergamon Press.
Byerly, W. E. (1893). An elementary treatise on Fourier's series and spherical, cylindrical and ellipsoidal harmonics. Boston: Ginn & Co. [Reprinted by Dover Publications, New York, 1959.]
Campbell, G. A. & Foster, R. M. (1948). Fourier integrals for practical applications. Princeton: Van Nostrand.
Carathéodory, C. (1911). Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Functionen. Rend. Circ. Mat. Palermo, 32, 193–217.
Carslaw, H. S. (1930). An introduction to the theory of Fourier's series and integrals. London: Macmillan. [Reprinted by Dover Publications, New York, 1950.]
Carslaw, H. S. & Jaeger, J. C. (1948). Operational methods in applied mathematics. Oxford University Press.
Cartan, H. (1961). Théorie des fonctions analytiques. Paris: Hermann.
Challifour, J. L. (1972). Generalized functions and Fourier analysis. Reading: Benjamin.
Champeney, D. C. (1973). Fourier transforms and their physical applications. New York: Academic Press.
Churchill, R. V. (1958). Operational mathematics, 2nd ed. New York: McGraw-Hill.
Cochran, W. (1948a). A critical examination of the Beevers–Lipson method of Fourier series summation. Acta Cryst. 1, 54–56.
Cochran, W. (1948b). The Fourier method of crystal structure analysis. Nature (London), 161, 765.
Cochran, W. (1948c). The Fourier method of crystal-structure analysis. Acta Cryst. 1, 138–142.
Cochran, W. (1948d). X-ray analysis and the method of steepest descents. Acta Cryst. 1, 273.
Cochran, W. (1951a). Some properties of the [F_{o} - F_{c}]-synthesis. Acta Cryst. 4, 408–411.
Cochran, W. (1951b). The structures of pyrimidines and purines. V. The electron distribution in adenine hydrochloride. Acta Cryst. 4, 81–92.
Cochran, W., Crick, F. H. C. & Vand, V. (1952). The structure of synthetic polypeptides. I. The transform of atoms on a helix. Acta Cryst. 5, 581–586.
Cochran, W. T., Cooley, J. W., Favin, D. L., Helms, H. D., Kaenel, R. A., Lang, W. W., Maling, G. C., Nelson, D. E., Rader, C. M. & Welch, P. D. (1967). What is the fast Fourier transform? IEEE Trans. Audio, 15, 45–55.
Collins, D. M. (1975). Efficiency in Fourier phase refinement for protein crystal structures. Acta Cryst. A31, 388–389.
Collins, D. M., Brice, M. D., Lacour, T. F. M. & Legg, M. J. (1976). Fourier phase refinement and extension by modification of electron-density maps. In Crystallographic computing techniques, edited by F. R. Ahmed, pp. 330–335. Copenhagen: Munksgaard.
Colman, P. M. (1974). Non-crystallographic symmetry and the sampling theorem. Z. Kristallogr. 140, 344–349.
Cooley, J. W. & Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301.
Cox, E. G. & Cruickshank, D. W. J. (1948). The accuracy of electron-density maps in X-ray structure analysis. Acta Cryst. 1, 92–93.
Cox, E. G., Gross, L. & Jeffrey, G. A. (1947). A Hollerith punched-card method for the evaluation of electron density in crystal structure analysis. Proc. Leeds Philos. Soc. 5, 1–13.
Cox, E. G., Gross, L. & Jeffrey, G. A. (1949). A Hollerith technique for computing three-dimensional differential Fourier syntheses in X-ray crystal structure analysis. Acta Cryst. 2, 351–355.
Cox, E. G. & Jeffrey, G. A. (1949). The use of Hollerith computing equipment in crystal structure analysis. Acta Cryst. 2, 341–343.
Coxeter, H. S. M. & Moser, W. O. J. (1972). Generators and relations for discrete groups, 3rd ed. Berlin: Springer-Verlag.
Cramér, H. (1946). Mathematical methods of statistics. Princeton University Press.
Crowther, R. A. (1967). A linear analysis of the non-crystallographic symmetry problem. Acta Cryst. 22, 758–764.
Crowther, R. A. (1969). The use of non-crystallographic symmetry for phase determination. Acta Cryst. B25, 2571–2580.
Crowther, R. A. (1972). The fast rotation function. In The molecular replacement method, edited by M. G. Rossmann, pp. 173–178. New York: Gordon & Breach.
Crowther, R. A. & Blow, D. M. (1967). A method of positioning a known molecule in an unknown crystal structure. Acta Cryst. 23, 544–548.
Cruickshank, D. W. J. (1949a). The accuracy of electron-density maps in X-ray analysis with special reference to dibenzyl. Acta Cryst. 2, 65–82.
Cruickshank, D. W. J. (1949b). The accuracy of atomic co-ordinates derived by least-squares or Fourier methods. Acta Cryst. 2, 154–157.
Cruickshank, D. W. J. (1950). The convergence of the least-squares and Fourier refinement methods. Acta Cryst. 3, 10–13.
Cruickshank, D. W. J. (1952). On the relations between Fourier and least-squares methods of structure determination. Acta Cryst. 5, 511–518.
Cruickshank, D. W. J. (1956). The determination of the anisotropic thermal motion of atoms in crystals. Acta Cryst. 9, 747–753.
Cruickshank, D. W. J. (1965a). Errors in Fourier series. In Computing methods in crystallography, edited by J. S. Rollett, pp. 107–111. Oxford: Pergamon Press.
Cruickshank, D. W. J. (1965b). Errors in least-squares methods. In Computing methods in crystallography, edited by J. S. Rollett, pp. 112–116. Oxford: Pergamon Press.
Cruickshank, D. W. J. (1970). Least-squares refinement of atomic parameters. In Crystallographic computing, edited by F. R. Ahmed, pp. 187–197. Copenhagen: Munksgaard.
Cruickshank, D. W. J., Pilling, D. E., Bujosa, A., Lovell, F. M. & Truter, M. R. (1961). Crystallographic calculations on the Ferranti Pegasus and mark I computers. In Computing methods and the phase problem in X-ray crystal analysis, edited by R. Pepinsky, J. M. Robertson & J. C. Speakman, pp. 32–78. Oxford: Pergamon Press.
Cruickshank, D. W. J. & Rollett, J. S. (1953). Electron-density errors at special positions. Acta Cryst. 6, 705–707.
Curtis, C. W. & Reiner, I. (1962). Representation theory of finite groups and associative algebras. New York: Wiley–Interscience.
Daniels, H. E. (1954). Saddlepoint approximation in statistics. Ann. Math. Stat. 25, 631–650.
Deisenhofer, J. & Steigemann, W. (1975). Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor at 1.5 Å resolution. Acta Cryst. B31, 238–250.
Diamond, R. (1971). A real-space refinement procedure for proteins. Acta Cryst. A27, 436–452.
Dickerson, R. E., Kendrew, J. C. & Strandberg, B. E. (1961a). The phase problem and isomorphous replacement methods in protein structures. In Computing methods and the phase problem in X-ray crystal analysis, edited by R. Pepinsky, J. M. Robertson & J. C. Speakman, pp. 236–251. Oxford: Pergamon Press.
Dickerson, R. E., Kendrew, J. C. & Strandberg, B. E. (1961b). The crystal structure of myoglobin: phase determination to a resolution of 2 Å by the method of isomorphous replacement. Acta Cryst. 14, 1188–1195.
Dietrich, H. (1972). A reconsideration of Fourier methods for the refinement of crystal structures. Acta Cryst. B28, 2807–2814.
Dieudonné, J. (1969). Foundations of modern analysis. New York and London: Academic Press.
Dieudonné, J. (1970). Treatise on analysis, Vol. II. New York and London: Academic Press.
Dirac, P. A. M. (1958). The principles of quantum mechanics, 4th ed. Oxford: Clarendon Press.
Dodson, E. J. (1981). Block diagonal least squares refinement using fast Fourier techniques. In Refinement of protein structures, compiled by P. A. Machin J. W. Campbell & M. Elder (ref. DL/SCI/R16), pp. 29–39. Warrington: SERC Daresbury Laboratory.
Donohue, J. & Schomaker, V. (1949). The use of punched cards in molecular structure determinations. III. Structure factor calculations of X-ray crystallography. Acta Cryst. 2, 344–347.
Duane, W. (1925). The calculation of the X-ray diffracting power at points in a crystal. Proc. Natl Acad. Sci. USA, 11, 489–493.
Dym, H. & McKean, H. P. (1972). Fourier series and integrals. New York and London: Academic Press.
Eklundh, J. O. (1972). A fast computer method for matrix transposing. IEEE Trans. C-21, 801–803.
Engel, P. (1986). Geometric crystallography. Dordrecht: Kluwer Academic Publishers.
Erdélyi, A. (1954). Tables of integral transforms, Vol. I. New York: McGraw-Hill.
Erdélyi, A. (1962). Operational calculus and generalized functions. New York: Holt, Rinehart & Winston.
Ewald, P. P. (1921). Die Berechnung optischer und electrostatischer Gitterpotentiale. Ann. Phys. Leipzig, 64, 253–287.
Ewald, P. P. (1940). X-ray diffraction by finite and imperfect crystal lattices. Proc. Phys. Soc. London, 52, 167–174.
Ewald, P. P. (1962). Fifty years of X-ray diffraction. Dordrecht: Kluwer Academic Publishers.
Farkas, D. R. (1981). Crystallographic groups and their mathematics. Rocky Mountain J. Math. 11, 511–551.
Fornberg, A. (1981). A vector implementation of the fast Fourier transform algorithm. Math. Comput. 36, 189–191.
Forsyth, J. B. & Wells, M. (1959). On an analytical approximation to the atomic scattering factor. Acta Cryst. 12, 412–415.
Fowler, R. H. (1936). Statistical mechanics, 2nd ed. Cambridge University Press.
Fowweather, F. (1955). The use of general programmes for crystallographic calculations on the Manchester University electronic digital computer (Mark II). Acta Cryst. 8, 633–637.
Freer, S. T., Alden, R. A., Levens, S. A. & Kraut, J. (1976). Refinement of five protein structures by constrained [F_{o} - F_{c}] Fourier methods. In Crystallographic computing techniques, edited by F. R. Ahmed, pp. 317–321. Copenhagen: Munksgaard.
Friedel, G. (1913). Sur les symétries cristallines que peut révéler la diffraction des rayons Röntgen. C. R. Acad. Sci. Paris, 157, 1533–1536.
Friedlander, F. G. (1982). Introduction to the theory of distributions. Cambridge University Press.
Friedlander, P. H., Love, W. & Sayre, D. (1955). Least-squares refinement at high speed. Acta Cryst. 8, 732.
Friedman, A. (1970). Foundations of modern analysis. New York: Holt, Rinehart & Winston. [Reprinted by Dover, New York, 1982.]
Frobenius, G. (1911). Über die unzerlegbaren diskreten Bewegungsgruppen. Sitzungsber. Preuss. Akad. Wiss. Berlin, 29, 654–665.
Gassmann, J. (1976). Improvement and extension of approximate phase sets in structure determination. In Crystallographic computing techniques, edited by F. R. Ahmed, pp. 144–154. Copenhagen: Munksgaard.
Gassmann, J. & Zechmeister, K. (1972). Limits of phase expansion in direct methods. Acta Cryst. A28, 270–280.
Gel'fand, I. M. & Shilov, G. E. (1964). Generalized functions, Vol. I. New York and London: Academic Press.
Gentleman, W. M. & Sande, G. (1966). Fast Fourier transforms – for fun and profit. In AFIPS Proc. 1966 Fall Joint Computer Conference, pp. 563–578. Washington, DC: Spartan Books.
Gillis, J. (1948a). Structure factor relations and phase determination. Acta Cryst. 1, 76–80.
Gillis, J. (1948b). The application of the Harker–Kasper method of phase determination. Acta Cryst. 1, 174–179.
Goedkoop, J. A. (1950). Remarks on the theory of phase-limiting inequalities and equalities. Acta Cryst. 3, 374–378.
Goldstine, H. H. (1977). A history of numerical analysis from the 16th through the 19th century. New York: Springer-Verlag.
Good, I. J. (1958). The interaction algorithm and practical Fourier analysis. J. R. Stat. Soc. B20, 361–372.
Good, I. J. (1960). Addendum [to Good (1958)]. J. R. Stat. Soc. B22, 372–375.
Good, I. J. (1971). The relationship between two fast Fourier transforms. IEEE Trans. C-20, 310–317.
Greenhalgh, D. M. S. & Jeffrey, G. A. (1950). A new punched card method of Fourier synthesis. Acta Cryst. 3, 311–312.
Grems, M. D. & Kasper, J. S. (1949). An improved punched-card method for crystal structure-factor calculations. Acta Cryst. 2, 347–351.
Grenander, U. (1952). On Toeplitz forms and stationary processes. Ark. Math. 1, 555–571.
Grenander, U. & Szegö, G. (1958). Toeplitz forms and their applications. Berkeley: University of California Press.
Guessoum, A. & Mersereau, R. M. (1986). Fast algorithms for the multidimensional discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 34, 937–943.
Hadamard, J. (1932). Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques. Paris: Hermann.
Hadamard, J. (1952). Lectures on Cauchy's problem in linear partial differential equations. New York: Dover Publications.
Hall, M. (1959). The theory of groups. New York: Macmillan.
Hardy, G. H. (1933). A theorem concerning Fourier transforms. J. London Math. Soc. 8, 227–231.
Harker, D. (1936). The application of the three-dimensional Patterson method and the crystal structures of proustite, Ag3AsS3, and pyrargyrite, Ag3SbS3. J. Chem. Phys. 4, 381–390.
Harker, D. & Kasper, J. S. (1948). Phases of Fourier coefficients directly from crystal diffraction data. Acta Cryst. 1, 70–75.
Harris, D. B., McClellan, J. H., Chan, D. S. K. & Schuessler, H. W. (1977). Vector radix fast Fourier transform. Rec. 1977 IEEE Internat. Conf. Acoust. Speech Signal Process. pp. 548–551.
Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K. & Bricogne, G. (1978). Tomato bushy stunt virus at 2.9 Ångström resolution. Nature (London), 276, 368–373.
Hartman, P. & Wintner, A. (1950). On the spectra of Toeplitz's matrices. Am. J. Math. 72, 359–366.
Hartman, P. & Wintner, A. (1954). The spectra of Toeplitz's matrices. Am. J. Math. 76, 867–882.
Hauptman, H. & Karle, J. (1953). Solution of the phase problem. I. The centrosymmetric crystal. ACA Monograph No. 3. Pittsburgh:Polycrystal Book Service.
Havighurst, R. J. (1925a). The distribution of diffracting power in sodium chloride. Proc. Natl Acad. Sci. USA, 11, 502–507.
Havighurst, R. J. (1925b). The distribution of diffracting power in certain crystals. Proc. Natl Acad. Sci. USA, 11, 507–512.
Heideman, M. T., Johnson, D. H. & Burrus, C. S. (1984). Gauss and the history of the fast Fourier transform. IEEE Acoust. Speech Signal Process. Mag. October 1984.
Hendrickson, W. A. & Konnert, J. H. (1980). Incorporation of stereochemical information into crystallographic refinement. In Computing in crystallography, edited by R. Diamond, S. Ramaseshan & K. Venkatesan, pp. 13.01–13.26. Bangalore: The Indian Academy of Science.
Herglotz, G. (1911). Über Potenzreihen mit positiven, reellen Teil im Einheitskreis. Ber. Sächs. Ges. Wiss. Leipzig, 63, 501–511.
Hirschman, I. I. Jr & Hughes, D. E. (1977). Extreme eigenvalues of Toeplitz operators. Lecture notes in mathematics, Vol. 618. Berlin: Springer-Verlag.
Hodgson, M. L., Clews, C. J. B. & Cochran, W. (1949). A punched card modification of the Beevers–Lipson method of Fourier synthesis. Acta Cryst. 2, 113–116.
Hoppe, W. & Gassmann, J. (1968). Phase correction, a new method to solve partially known structures. Acta Cryst. B24, 97–107.
Hoppe, W., Gassmann, J. & Zechmeister, K. (1970). Some automatic procedures for the solution of crystal structures with direct methods and phase correction. In Crystallographic computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 26–36. Copenhagen: Munksgaard.
Hörmander, L. (1963). Linear partial differential operators. Berlin: Springer-Verlag.
Hörmander, L. (1973). An introduction to complex analysis in several variables, 2nd ed. Amsterdam: North-Holland.
Huber, R., Kulka, D., Bode, W., Schwager, P., Bartels, K., Deisenhofer, J. & Steigemann, W. (1974). Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1.9Å resolution. J. Mol. Biol. 89, 73–101.
Hughes, E. W. (1941). The crystal structure of melamine. J. Am. Chem. Soc. 63, 1737–1752.
Immirzi, A. (1973). A general Fourier program for X-ray crystal-structure analysis which utilizes the Cooley–Tukey algorithm. J. Appl. Cryst. 6, 246–249.
Immirzi, A. (1976). Fast Fourier transform in crystallography. In Crystallographic computing techniques, edited by F. R. Ahmed, pp. 399–412. Copenhagen: Munksgaard.
Isaacs, N. W. (1982a). The refinement of macromolecules. In Computational crystallography, edited by D. Sayre, pp. 381–397. New York: Oxford University Press.
Isaacs, N. W. (1982b). Refinement techniques: use of the FFT. In Computational crystallography, edited by D. Sayre, pp. 398–408. New York: Oxford University Press.
Isaacs, N. W. (1984). Refinement using the fast-Fourier transform least squares algorithm. In Methods and applications in crystallographic computing, edited by S. R. Hall & T. Ashida, pp. 193–205. New York: Oxford University Press.
Isaacs, N. W. & Agarwal, R. C. (1978). Experience with fast Fourier least squares in the refinement of the crystal structure of rhombohedral 2-zinc insulin at 1.5 Å resolution. Acta Cryst. A34, 782–791.
Jack, A. (1973). Direct determination of X-ray phases for tobacco mosaic virus protein using non-crystallographic symmetry. Acta Cryst. A29, 545–554.
Jack, A. & Levitt, M. (1978). Refinement of large structures by simultaneous minimization of energy and R factor. Acta Cryst. A34, 931–935.
James, R. W. (1948a). The optical principles of the diffraction of X-rays. London: Bell.
James, R. W. (1948b). False detail in three-dimensional Fourier representations of crystal structures. Acta Cryst. 1, 132–134.
Janssen, T. (1973). Crystallographic groups. Amsterdam: North-Holland.
Jaynes, E. T. (1957). Information theory and statistical mechanics. Phys. Rev. 106, 620–630.
Jaynes, E. T. (1968). Prior probabilities. IEEE Trans. SSC, 4, 227–241.
Jaynes, E. T. (1983). Papers on probability, statistics and statistical physics. Dordrecht: Kluwer Academic Publishers.
Johnson, H. W. & Burrus, C. S. (1983). The design of optimal DFT algorithms using dynamic programming. IEEE Trans. Acoust. Speech Signal Process. 31, 378–387.
Jürgensen, H. (1970). Calculation with the elements of a finite group given by generators and defining relations. In Computational problems in abstract algebra, edited by J. Leech, pp. 47–57. Oxford: Pergamon Press.
Kac, M. (1954). Toeplitz matrices, translation kernels, and a related problem in probability theory. Duke Math. J. 21, 501–509.
Kac, M., Murdock, W. L. & Szegö, G. (1953). On the eigenvalues of certain Hermitian forms. J. Rat. Mech. Anal. 2, 767–800.
Karle, J. & Hauptman, H. (1950). The phases and magnitudes of the structure factors. Acta Cryst. 3, 181–187.
Katznelson, Y. (1968). An introduction to harmonic analysis. New York: John Wiley.
Khinchin, A. I. (1949). Mathematical foundations of statistical mechanics. New York: Dover Publications.
Kitz, N. & Marchington, B. (1953). A method of Fourier synthesis using a standard Hollerith senior rolling total tabulator. Acta Cryst. 6, 325–326.
Klug, A. (1958). Joint probability distributions of structure factors and the phase problem. Acta Cryst. 11, 515–543.
Klug, A., Crick, F. H. C. & Wyckoff, H. W. (1958). Diffraction by helical structures. Acta Cryst. 11, 199–213.
Kluyver, J. C. (1906). A local probability problem. K. Ned. Akad. Wet. Proc. 8, 341–350.
Kolba, D. P. & Parks, T. W. (1977). A prime factor FFT algorithm using high-speed convolution. IEEE Trans. Acoust. Speech Signal Process. 25, 281–294.
Konnert, J. H. (1976). A restrained-parameter structure-factor least-squares refinement procedure for large asymmetric units. Acta Cryst. A32, 614–617.
Konnert, J. H. & Hendrickson, W. A. (1980). A restrained-parameter thermal-factor refinement procedure. Acta Cryst. A36, 344–350.
Korn, D. G. & Lambiotte, J. J. Jr (1979). Computing the fast Fourier transform on a vector computer. Math. Comput. 33, 977–992.
Kuriyan, J., Brünger, A. T., Karplus, M. & Hendrickson, W. A. (1989). X-ray refinement of protein structures by simulated annealing: test of the method on myohemerythrin. Acta Cryst. A45, 396–409.
Lanczos, C. (1966). Discourse on Fourier series. Edinburgh: Oliver & Boyd.
Landau, H. J. & Pollack, H. O. (1961). Prolate spheroidal wave functions, Fourier analysis and uncertainty (2). Bell Syst. Tech. J. 40, 65–84.
Landau, H. J. & Pollack, H. O. (1962). Prolate spheroidal wave functions, Fourier analysis and uncertainty (3): the dimension of the space of essentially time- and band-limited signals. Bell Syst. Tech. J. 41, 1295–1336.
Lang, S. (1965). Algebra. Reading, MA: Addison-Wesley.
Larmor, J. (1934). The Fourier discontinuities: a chapter in historical integral calculus. Philos. Mag. 17, 668–678.
Laue, M. von (1936). Die aüßere Form der Kristalle in ihrem Einfluß auf die Interferenzerscheinungen an Raumgittern. Ann. Phys. (Leipzig), 26, 55–68.
Lavoine, J. (1963). Transformation de Fourier des pseudo-fonctions, avec tables de nouvelles transformées. Paris: Editions du CNRS.
Ledermann, W. (1987). Introduction to group characters, 2nd ed. Cambridge University Press.
Leslie, A. G. W. (1987). A reciprocal-space method for calculating a molecular envelope using the algorithm of B. C. Wang. Acta Cryst. A43, 134–136.
Lighthill, M. J. (1958). Introduction to Fourier analysis and generalized functions. Cambridge University Press.
Linnik, I. Ju. (1975). A multidimensional analogue of a limit theorem of G. Szegö. Math. USSR Izv. 9, 1323–1332.
Lipson, H. & Beevers, C. A. (1936). An improved numerical method of two-dimensional Fourier synthesis for crystals. Proc. Phys. Soc. London, 48, 772–780.
Lipson, H. & Cochran, W. (1953). The determination of crystal structures. London: Bell.
Lipson, H. & Cochran, W. (1968). The determination of crystal structures. Revised and enlarged edition. London: G. Bell & Sons.
Lipson, H. & Taylor, C. A. (1951). Optical methods in X-ray analysis. II. Fourier transforms and crystal-structure determination. Acta Cryst. 4, 458–462.
Lipson, H. & Taylor, C. A. (1958). Fourier transforms and X-ray diffraction. London: Bell.
Livesey, A. K. & Skilling, J. (1985). Maximum entropy theory. Acta Cryst. A41, 113–122.
Lonsdale, K. (1936). Simplified structure factor and electron density formulae for the 230 space groups of mathematical crystallography. London: Bell.
Lunin, V. Yu. (1985). Use of the fast differentiation algorithm for phase refinement in protein crystallography. Acta Cryst. A41, 551–556.
McClellan, J. H. & Rader, C. M. (1979). Number theory in digital signal processing. Englewood Cliffs: Prentice Hall.
MacGillavry, C. H. (1950). On the derivation of Harker–Kasper inequalities. Acta Cryst. 3, 214–217.
MacLane, S. (1963). Homology. Berlin: Springer-Verlag.
Magnus, W., Karrass, A. & Solitar, D. (1976). Combinatorial group theory: presentations of groups in terms of generators and relations, 2nd revised ed. New York: Dover Publications.
Magnus, W., Oberhettinger, F. & Soni, R. P. (1966). Formulas and theorems for the special functions of mathematical physics. Berlin: Springer-Verlag.
Main, P. & Rossmann, M. G. (1966). Relationships among structure factors due to identical molecules in different crystallographic environments. Acta Cryst. 21, 67–72.
Main, P. & Woolfson, M. M. (1963). Direct determination of phases by the use of linear equations between structure factors. Acta Cryst. 16, 1046–1051.
Mayer, S. W. & Trueblood, K. N. (1953). Three-dimensional Fourier summations on a high-speed digital computer. Acta Cryst. 6, 427.
Mersereau, R. & Speake, T. C. (1981). A unified treatment of Cooley–Tukey algorithms for the evaluation of the multidimensional DFT. IEEE Trans. Acoust. Speech Signal Process. 29, 1011–1018.
Mersereau, R. M. (1979). The processing of hexagonally sampled two-dimensional signals. Proc. IEEE, 67, 930–949.
Montroll, E. W., Potts, R. B. & Ward, J. C. (1963). Correlations and spontaneous magnetization of the two-dimensional Ising model. J. Math. Phys. 4, 308–322.
Moore, D. H. (1971). Heaviside operational calculus. An elementary foundation. New York: American Elsevier.
Morris, R. L. (1978). A comparative study of time efficient FFT and WFTA programs for general purpose computers. IEEE Trans. Acoust. Speech Signal Process. 26, 141–150.
Narayan, R. & Nityananda, R. (1982). The maximum determinant method and the maximum entropy method. Acta Cryst. A38, 122–128.
Natterer, F. (1986). The mathematics of computerized tomography. New York: John Wiley.
Navaza, J. (1985). On the maximum-entropy estimate of the electron density function. Acta Cryst. A41, 232–244.
Nawab, H. & McClellan, J. H. (1979). Bounds on the minimum number of data transfers in WFTA and FFT programs. IEEE Trans. Acoust. Speech Signal Process. 27, 393–398.
Niggli, A. (1961). Small-scale computers in X-ray crystallography. In Computing methods and the phase problem, edited by R. Pepinsky, J. M. Robertson & J. C. Speakman, pp. 12–20. Oxford: Pergamon Press.
Nussbaumer, H. J. (1981). Fast Fourier transform and convolution algorithms. Berlin: Springer-Verlag.
Nussbaumer, H. J. & Quandalle, P. (1979). Fast computation of discrete Fourier transforms using polynomial transforms. IEEE Trans. Acoust. Speech Signal Process. 27, 169–181.
Onsager, L. (1944). Crystal statistics. I. Two-dimensional model with an order–disorder transition. Phys. Rev. 65, 117–149.
Paley, R. E. A. C. & Wiener, N. (1934). Fourier transforms in the complex domain. Providence, RI: American Mathematical Society.
Patterson, A. L. (1934). A Fourier series method for the determination of the components of interatomic distances in crystals. Phys. Rev. 46, 372–376.
Patterson, A. L. (1935a). A direct method for the determination of the components of interatomic distances in crystals. Z. Kristallogr. 90, 517–542.
Patterson, A. L. (1935b). Tabulated data for the seventeen plane groups. Z. Kristallogr. 90, 543–554.
Patterson, A. L. (1959). In International tables for X-ray crystallography, Vol. II, pp. 9–10. Erratum, January 1962. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Pearson, K. (1905). The problem of the random walk. Nature (London), 72, 294, 342.
Pease, M. C. (1968). An adaptation of the fast Fourier transform for parallel processing. J. Assoc. Comput. Mach. 15, 252–264.
Pepinsky, R. (1947). An electronic computer for X-ray crystal structure analyses. J. Appl. Phys. 18, 601–604.
Pepinsky, R. (1952). The use of positive kernels in Fourier syntheses of crystal structures. In Computing methods and the phase problem in X-ray crystal analysis, edited by R. Pepinsky, pp. 319–338. State College: Penn. State College.
Pepinsky, R., van den Hende, J. & Vand, V. (1961). X-RAC and digital computing methods. In Computing methods and the phase problem, edited by R. Pepinsky, J. M. Robertson & J. C. Speakman, pp. 154–160. Oxford: Pergamon Press.
Pepinsky, R. & Sayre, D. (1948). Quantitative electron-density contour delineation in the electronic Fourier synthesizer for crystal structure analysis. Nature (London), 162, 22–23.
Petrov, V. V. (1975). Sums of independent random variables. Berlin: Springer-Verlag.
Pollack, H. O. & Slepian, D. (1961). Prolate spheroidal wave functions, Fourier analysis and uncertainty (1). Bell Syst. Tech. J. 40, 43–64.
Qurashi, M. M. (1949). Optimal conditions for convergence of steepest descents as applied to structure determination. Acta Cryst. 2, 404–409.
Qurashi, M. M. (1953). An analysis of the efficiency of convergence of different methods of structure determination. I. The methods of least squares and steepest descents: centrosymmetric case. Acta Cryst. 6, 577–588.
Qurashi, M. M. & Vand, V. (1953). Weighting of the least-squares and steepest-descents methods in the initial stages of the crystal-structure determination. Acta Cryst. 6, 341–349.
Rader, C. M. (1968). Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE, 56, 1107–1108.
Rayleigh (J. W. Strutt), Lord (1880). On the resultant of a large number of vibrations of the same pitch and arbitrary phase. Philos. Mag. 10, 73–78.
Rayleigh (J. W. Strutt), Lord (1899). On James Bernoulli's theorem in probabilities. Philos. Mag. 47, 246–251.
Rayleigh (J. W. Strutt), Lord (1905). The problem of the random walk. Nature (London), 72, 318.
Rayleigh (J. W. Strutt), Lord (1918). On the light emitted from a random distribution of luminous sources. Philos. Mag. 36, 429–449.
Rayleigh (J. W. Strutt), Lord (1919). On the problem of random flights in one, two or three dimensions. Philos. Mag. 37, 321–347.
Reif, F. (1965). Fundamentals of statistical and thermal physics, Appendix A.6. New York: McGraw-Hill.
Reijen, L. L. van (1942). Diffraction effects in Fourier syntheses and their elimination in X-ray structure investigations. Physica, 9, 461–480.
Rice, S. O. (1944, 1945). Mathematical analysis of random noise. Bell Syst. Tech. J. 23, 283–332 (parts I and II); 24, 46–156 (parts III and IV). [Reprinted in Selected papers on noise and stochastic processes (1954), edited by N. Wax, pp. 133–294. New York: Dover Publications.]
Riesz, M. (1938). L'intégrale de Riemann–Liouville et le problème de Cauchy pour l'équation des ondes. Bull. Soc. Math. Fr. 66, 153–170.
Riesz, M. (1949). L'intégrale de Riemann–Liouville et le problème de Cauchy. Acta Math. 81, 1–223.
Rivard, G. E. (1977). Direct fast Fourier transform of bivariate functions. IEEE Trans. Acoust. Speech Signal Process. 25, 250–252.
Robertson, J. M. (1932). A simple harmonic continuous calculating machine. Philos. Mag. 13, 413–419.
Robertson, J. M. (1935). An X-ray study of the structure of phthalocyanines. Part I. The metal-free, nickel, copper, and platinum compounds. J. Chem. Soc. pp. 615–621.
Robertson, J. M. (1936a). Numerical and mechanical methods in double Fourier synthesis. Philos. Mag. 21, 176–187.
Robertson, J. M. (1936b). Calculation of structure factors and summation of Fourier series in crystal analysis: non-centrosymmetrical projections. Nature (London), 138, 683–684.
Robertson, J. M. (1936c). An X-ray study of the phthalocyanines. Part II. Quantitative structure determination of the metal-free compound. J. Chem. Soc. pp. 1195–1209.
Robertson, J. M. (1937). X-ray analysis and application of Fourier series methods to molecular structures. Phys. Soc. Rep. Prog. Phys. 4, 332–367.
Robertson, J. M. (1954). A fast digital computer for Fourier operations. Acta Cryst. 7, 817–822.
Robertson, J. M. (1955). Some properties of Fourier strips with applications to the digital computer. Acta Cryst. 8, 286–288.
Robertson, J. M. (1961). A digital mechanical computer for Fourier operations. In Computing methods and the phase problem, edited by R. Pepinsky, J. M. Robertson & J. C. Speakman, pp. 21–24. Oxford: Pergamon Press.
Rollett, J. S. (1965). Structure factor routines. In Computing methods in crystallography, edited by J. S. Rollett, pp. 38–46. Oxford: Pergamon Press,
Rollett, J. S. (1970). Least-squares procedures in crystal structure analysis. In Crystallographic computing, edited by F. R. Ahmed, pp. 167–181. Copenhagen: Munksgaard.
Rollett, J. S. & Davies, D. R. (1955). The calculation of structure factors for centrosymmetric monoclinic systems with anisotropic atomic vibration. Acta Cryst. 8, 125–128.
Rossmann, M. G. & Blow, D. M. (1962). The detection of sub-units within the crystallographic asymmetric unit. Acta Cryst. 15, 24–31.
Rossmann, M. G. & Blow, D. M. (1963). Determination of phases by the conditions of non-crystallographic symmetry. Acta Cryst. 16, 39–45.
Sayre, D. (1951). The calculation of structure factors by Fourier summation. Acta Cryst. 4, 362–367.
Sayre, D. (1952a). The squaring method: a new method for phase determination. Acta Cryst. 5, 60–65.
Sayre, D. (1952b). Some implications of a theorem due to Shannon. Acta Cryst. 5, 843.
Sayre, D. (1952c). The Fourier transform in X-ray crystal analysis. In Computing methods and the phase problem in X-ray crystal analysis, edited by R. Pepinsky, pp. 361–390. State College: Penn. State University.
Sayre, D. (1972). On least-squares refinement of the phases of crystallographic structure factors. Acta Cryst. A28, 210–212.
Sayre, D. (1974). Least-squares phase refinement. II. High-resolution phasing of a small protein. Acta Cryst. A30, 180–184.
Sayre, D. (1980). Phase extension and refinement using convolutional and related equation systems. In Theory and practice of direct methods in crystallography, edited by M. F. C. Ladd & R. A. Palmer, pp. 271–286. New York and London: Plenum.
Schroeder, M. R. (1986). Number theory in science and communication, 2nd ed. Berlin: Springer-Verlag.
Schwartz, L. (1965). Mathematics for the physical sciences. Paris: Hermann, and Reading: Addison-Wesley.
Schwartz, L. (1966). Théorie des distributions. Paris: Hermann.
Schwarzenberger, R. L. E. (1980). N-dimensional crystallography. Research notes in mathematics, Vol. 41. London: Pitman.
Scott, W. R. (1964). Group theory. Englewood Cliffs: Prentice-Hall. [Reprinted by Dover, New York, 1987.]
Shaffer, P. A. Jr, Schomaker, V. & Pauling, L. (1946a). The use of punched cards in molecular structure determinations. I. Crystal structure calculations. J. Chem. Phys. 14, 648–658.
Shaffer, P. A. Jr, Schomaker, V. & Pauling, L. (1946b). The use of punched cards in molecular structure determinations. II. Electron diffraction calculations. J. Chem. Phys. 14, 659–664.
Shannon, C. E. (1949). Communication in the presence of noise. Proc. Inst. Radio Eng. NY, 37, 10–21.
Shenefelt, M. (1988). Group invariant finite Fourier transforms. PhD thesis, Graduate Centre of the City University of New York.
Shmueli, U. & Weiss, G. H. (1985). Exact joint probability distribution for centrosymmetric structure factors. Derivation and application to the [\Sigma_{1}] relationship in the space group [P\bar{1}]. Acta Cryst. A41, 401–408.
Shmueli, U. & Weiss, G. H. (1986). Exact joint distribution of [E_{\bf h}], [E_{\bf k}] and [E_{\bf h+k}], and the probability for the positive sign of the triple product in the space group [P{\bar {1}}]. Acta Cryst. A42, 240–246.
Shmueli, U. & Weiss, G. H. (1987). Exact random-walk models in crystallographic statistics. III. Distributions of [|E|] for space groups of low symmetry. Acta Cryst. A43, 93–98.
Shmueli, U. & Weiss, G. H. (1988). Exact random-walk models in crystallographic statistics. IV. P.d.f.'s of [|E|] allowing for atoms in special positions. Acta Cryst. A44, 413–417.
Shmueli, U., Weiss, G. H. & Kiefer, J. E. (1985). Exact random-walk models in crystallographic statistics. II. The bicentric distribution for the space group [P{\bar {1}}]. Acta Cryst. A41, 55–59.
Shmueli, U., Weiss, G. H., Kiefer, J. E. & Wilson, A. J. C. (1984). Exact random-walk models in crystallographic statistics. I. Space groups [P{\bar {\it 1}}] and P1. Acta Cryst. A40, 651–660.
Shoemaker, D. P., Donohue, J., Schomaker, V. & Corey, R. B. (1950). The crystal structure of LS-threonine. J. Am. Chem. Soc. 72, 2328–2349.
Shoemaker, D. P. & Sly, W. G. (1961). Computer programming strategy for crystallographic Fourier synthesis: program MIFR1. Acta Cryst. 14, 552.
Shohat, J. A. & Tamarkin, J. D. (1943). The problem of moments. Mathematical surveys, No. 1. New York: American Mathematical Society.
Silverman, H. F. (1977). An introduction to programming the Winograd Fourier transform algorithm (WFTA). IEEE Trans. Acoust. Speech Signal Process. 25, 152–165.
Singleton, R. C. (1969). An algorithm for computing the mixed radix fast Fourier transform. IEEE Trans. AU, 17, 93–103.
Sneddon, I. N. (1951). Fourier transforms. New York: McGraw-Hill.
Sneddon, I. N. (1972). The use of integral transforms. New York: McGraw-Hill.
Sparks, R. A., Prosen, R. J., Kruse, F. H. & Trueblood, K. N. (1956). Crystallographic calculations on the high-speed digital computer SWAC. Acta Cryst. 9, 350–358.
Sprecher, D. A. (1970). Elements of real analysis. New York: Academic Press. [Reprinted by Dover Publications, New York, 1987.]
Stout, G. H. & Jensen, L. H. (1968). X-ray structure determination. A practical guide. New York: Macmillan.
Suryan, G. (1957). An analogue computer for double Fourier series summation for X-ray crystal-structure analysis. Acta Cryst. 10, 82–84.
Sussman, J. L., Holbrook, S. R., Church, G. M. & Kim, S.-H. (1977). A structure-factor least-squares refinement procedure for macromolecular structures using constrained and restrained parameters. Acta Cryst. A33, 800–804.
Swartzrauber, P. N. (1984). FFT algorithms for vector computers. Parallel Comput. 1, 45–63.
Szegö, G. (1915). Ein Grenzwertsatz uber die Toeplitzschen Determinanten einer reellen positiven Funktion. Math. Ann. 76, 490–503.
Szegö, G. (1920). Beitrage zur Theorie der Toeplitzchen Formen (Erste Mitteilung). Math. Z. 6, 167–202.
Szegö, G. (1952). On certain Hermitian forms associated with the Fourier series of a positive function. Comm. Sém. Mat., Univ. Lund (Suppl. dedicated to Marcel Riesz), pp. 228–238.
Takano, T. (1977a). Structure of myoglobin refined at 2.0 Å resolution. I. Crystallographic refinement of metmyoglobin from sperm whale. J. Mol. Biol. 110, 537–568.
Takano, T. (1977b). Structure of myoglobin refined at 2.0 Å resolution. II. Structure of deoxymyoglobin from sperm whale. J. Mol. Biol. 110, 569–584.
Temperton, C. (1983a). Self-sorting mixed-radix fast Fourier transforms. J. Comput. Phys. 52, 1–23.
Temperton, C. (1983b). A note on the prime factor FFT algorithm. J. Comput. Phys. 52, 198–204.
Temperton, C. (1983c). Fast mixed-radix real Fourier transforms. J. Comput. Phys. 52, 340–350.
Temperton, C. (1985). Implementation of a self-sorting in place prime factor FFT algorithm. J. Comput. Phys. 58, 283–299.
Ten Eyck, L. F. (1973). Crystallographic fast Fourier transforms. Acta Cryst. A29, 183–191.
Ten Eyck, L. F. (1977). Efficient structure factor calculation for large molecules by fast Fourier transform. Acta Cryst. A33, 486–492.
Ten Eyck, L. F. (1985). Fast Fourier transform calculation of electron density maps. In Diffraction methods for biological macromolecules (Methods in enzymology, Vol. 115), edited by H. Wyckoff, C. H. W. Hirs & S. N. Timasheff, pp. 324–337. New York: Academic Press.
Titchmarsh, E. C. (1922). Hankel transforms. Proc. Camb. Philos. Soc. 21, 463–473.
Titchmarsh, E. C. (1948). Introduction to the theory of Fourier integrals. Oxford: Clarendon Press.
Toeplitz, O. (1907). Zur Theorie der quadratischen Formen von unendlichvielen Variablen. Nachr. der Kgl. Ges. Wiss. Göttingen, Math. Phys. Kl. pp. 489–506.
Toeplitz, O. (1910). Zur Transformation der Scharen bilinearer Formen von unendlichvielen Veränderlichen. Nachr. der Kgl. Ges. Wiss. Göttingen, Math. Phys. Kl. pp. 110–115.
Toeplitz, O. (1911a). Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen. I. Teil: Theorie der L-formen. Math. Ann. 70, 351–376.
Toeplitz, O. (1911b). Über die Fouriersche Entwicklung positiver Funktionen. Rend. Circ. Mat. Palermo, 32, 191–192.
Tolimieri, R. (1985). The algebra of the finite Fourier transform and coding theory. Trans. Am. Math. Soc. 287, 253–273.
Tolimieri, R., An, M. & Lu, C. (1989). Algorithms for discrete Fourier transform and convolution. New York: Springer-Verlag.
Tolstov, G. P. (1962). Fourier series. Englewood Cliffs, NJ: Prentice-Hall.
Trèves, F. (1967). Topological vector spaces, distributions, and kernels. New York and London: Academic Press.
Tronrud, D. E., Ten Eyck, L. F. & Matthews, B. W. (1987). An efficient general-purpose least-squares refinement program for macromolecular structures. Acta Cryst. A43, 489–501.
Trueblood, K. N. (1956). Symmetry transformations of general anisotropic temperature factors. Acta Cryst. 9, 359–361.
Truter, M. R. (1954). Refinement of a non-centrosymmetrical structure: sodium nitrite. Acta Cryst. 7, 73–77.
Uhrich, M. L. (1969). Fast Fourier transforms without sorting. IEEE Trans. AU, 17, 170–172.
Van der Pol, B. & Bremmer, H. (1955). Operational calculus, 2nd ed. Cambridge University Press.
Vand, V. (1948). Method of steepest descents: improved formula for X-ray analysis. Nature (London), 161, 600–601.
Vand, V. (1951). A simplified method of steepest descents. Acta Cryst. 4, 285–286.
Vand, V., Eiland, P. F. & Pepinsky, R. (1957). Analytical representation of atomic scattering factors. Acta Cryst. 10, 303–306.
Wang, B. C. (1985). Resolution of phase ambiguity in macromolecular crystallography. In Diffraction methods for biological macromolecules (Methods in enzymology, Vol. 115), edited by H. Wyckoff, C. H. W. Hirs & S. N. Timasheff, pp. 90–112. New York: Academic Press.
Warren, B. & Bragg, W. L. (1929). The structure of diopside, CaMg(SiO3)2. Z. Kristallogr. 69, 168–193.
Warren, B. E. (1969). X-ray diffraction. Reading: Addison-Wesley.
Warren, B. E. & Gingrich, N. S. (1934). Fourier integral analysis of X-ray powder patterns. Phys. Rev. 46, 368–372.
Waser, J. (1955a). Symmetry relations between structure factors. Acta Cryst. 8, 595.
Waser, J. (1955b). The anisotropic temperature factor in triclinic coordinates. Acta Cryst. 8, 731.
Waser, J. & Schomaker, V. (1953). The Fourier inversion of diffraction data. Rev. Mod. Phys. 25, 671–690.
Watson, G. L. (1970). Integral quadratic forms. Cambridge University Press.
Watson, G. N. (1944). A treatise on the theory of Bessel functions, 2nd ed. Cambridge University Press.
Wells, M. (1965). Computational aspects of space-group symmetry. Acta Cryst. 19, 173–179.
Weyl, H. (1931). The theory of groups and quantum mechanics. New York: Dutton. [Reprinted by Dover Publications, New York, 1950.]
Whittaker, E. J. W. (1948). The evaluation of Fourier transforms by a Fourier synthesis method. Acta Cryst. 1, 165–167.
Whittaker, E. T. (1915). On the functions which are represented by the expansions of the interpolation-theory. Proc. R. Soc. (Edinburgh), 35, 181–194.
Whittaker, E. T. (1928). Oliver Heaviside. Bull. Calcutta Math. Soc. 20, 199–220. [Reprinted in Moore (1971).]
Whittaker, E. T. & Robinson, G. (1944). The calculus of observations. London: Blackie.
Whittaker, E. T. & Watson, G. N. (1927). A course of modern analysis, 4th ed. Cambridge University Press.
Widom, H. (1960). A theorem on translation kernels in n dimensions. Trans. Am. Math. Soc. 94, 170–180.
Widom, H. (1965). Toeplitz matrices. In Studies in real and complex analysis, edited by I. I. Hirschmann Jr, pp. 179–209. MAA studies in mathematics, Vol. 3. Englewood Cliffs: Prentice-Hall.
Widom, H. (1975). Asymptotic inversion of convolution operators. Publ. Math. IHES, 44, 191–240.
Wiener, N. (1933). The Fourier integral and certain of its applications. Cambridge University Press. [Reprinted by Dover Publications, New York, 1959.]
Wilkins, S. W., Varghese, J. N. & Lehmann, M. S. (1983). Statistical geometry. I. A self-consistent approach to the crystallographic inversion problem based on information theory. Acta Cryst. A39, 47–60.
Winograd, S. (1976). On computing the discrete Fourier transform. Proc. Natl Acad. Sci. USA, 73, 1005–1006.
Winograd, S. (1977). Some bilinear forms whose multiplicative complexity depends on the field of constants. Math. Syst. Theor. 10, 169–180.
Winograd, S. (1978). On computing the discrete Fourier transform. Math. Comput. 32, 175–199.
Winograd, S. (1980). Arithmetic complexity of computations. CBMS-NST Regional Conf. Series Appl. Math, Publ. No. 33. Philadelphia: SIAM Publications.
Wolf, J. A. (1967). Spaces of constant curvature. New York: McGraw-Hill.
Wondratschek, H. (2005). Introduction to space-group symmetry. In International tables for crystallography, Vol. A. Space-group symmetry, edited by Th. Hahn, Part 8. Heidelberg: Springer.
Yosida, K. (1965). Functional analysis. Berlin: Springer-Verlag.
Zachariasen, W. H. (1945). Theory of X-ray diffraction in crystals. New York: John Wiley.
Zassenhaus, H. (1948). Über eine Algorithmus zur Bestimmung der Raumgruppen. Commun. Helv. Math. 21, 117–141.
Zemanian, A. H. (1965). Distribution theory and transform analysis. New York: McGraw-Hill.
Zemanian, A. H. (1968). Generalised integral transformations. New York: Interscience.
Zygmund, A. (1959). Trigonometric series, Vols. 1 and 2. Cambridge University Press.
Zygmund, A. (1976). Notes on the history of Fourier series. In Studies in harmonic analysis, edited by J. M. Ash, pp. 1–19. MAA studies in mathematics, Vol. 13. The Mathematical Association of America.