
1.3. Fourier transforms in crystallography: theory, algorithms and applications

BY G. BRICOGNE

1.3.1. General introduction

Since the publication of Volume II of International Tables, most
aspects of the theory, computation and applications of Fourier
transforms have undergone considerable development, often to the
point of being hardly recognizable.

The mathematical analysis of the Fourier transformation has
been extensively reformulated within the framework of distribution
theory, following Schwartz’s work in the early 1950s.

The computation of Fourier transforms has been revolutionized
by the advent of digital computers and of the Cooley–Tukey
algorithm, and progress has been made at an ever-accelerating pace
in the design of new types of algorithms and in optimizing their
interplay with machine architecture.

These advances have transformed both theory and practice in
several fields which rely heavily on Fourier methods; much of
electrical engineering, for instance, has become digital signal
processing.

By contrast, crystallography has remained relatively unaffected
by these developments. From the conceptual point of view, old-
fashioned Fourier series are still adequate for the quantitative
description of X-ray diffraction, as this rarely entails consideration
of molecular transforms between reciprocal-lattice points. From the
practical point of view, three-dimensional Fourier transforms have
mostly been used as a tool for visualizing electron-density maps, so
that only moderate urgency was given to trying to achieve ultimate
efficiency in these relatively infrequent calculations.

Recent advances in phasing and refinement methods, however,
have placed renewed emphasis on concepts and techniques long
used in digital signal processing, e.g. flexible sampling, Shannon
interpolation, linear filtering, and interchange between convolution
and multiplication. These methods are iterative in nature, and thus
generate a strong incentive to design new crystallographic Fourier
transform algorithms making the fullest possible use of all available
symmetry to save both storage and computation.

As a result, need has arisen for a modern and coherent account of
Fourier transform methods in crystallography which would provide:

(i) a simple and foolproof means of switching between the three
different guises in which the Fourier transformation is encountered
(Fourier transforms, Fourier series and discrete Fourier transforms),
both formally and computationally;

(ii) an up-to-date presentation of the most important algorithms
for the efficient numerical calculation of discrete Fourier trans-
forms;

(iii) a systematic study of the incorporation of symmetry into the
calculation of crystallographic discrete Fourier transforms;

(iv) a survey of the main types of crystallographic computations
based on the Fourier transformation.

The rapid pace of progress in these fields implies that such an
account would be struck by quasi-immediate obsolescence if it were
written solely for the purpose of compiling a catalogue of results
and formulae ‘customized’ for crystallographic use. Instead, the
emphasis has been placed on a mode of presentation in which most
results and formulae are derived rather than listed. This does entail a
substantial mathematical overhead, but has the advantage of
preserving in its ‘native’ form the context within which these
results are obtained. It is this context, rather than any particular set
of results, which constitutes the most fertile source of new ideas and
new applications, and as such can have any hope at all of remaining
useful in the long run.

These conditions have led to the following choices:
(i) the mathematical theory of the Fourier transformation has

been cast in the language of Schwartz’s theory of distributions

which has long been adopted in several applied fields, in particular
electrical engineering, with considerable success; the extra work
involved handsomely pays for itself by allowing the three different
types of Fourier transformations to be treated together, and by
making all properties of the Fourier transform consequences of a
single property (the convolution theorem). This is particularly
useful in all questions related to the sampling theorem;

(ii) the various numerical algorithms have been presented as the
consequences of basic algebraic phenomena involving Abelian
groups, rings and finite fields; this degree of formalization greatly
helps the subsequent incorporation of symmetry;

(iii) the algebraic nature of space groups has been re-
emphasized so as to build up a framework which can accommodate
both the phenomena used to factor the discrete Fourier transform
and those which underlie the existence (and lead to the
classification) of space groups; this common ground is found in
the notion of module over a group ring (i.e. integral representation
theory), which is then applied to the formulation of a large number
of algorithms, many of which are new;

(iv) the survey of the main types of crystallographic computa-
tions has tried to highlight the roles played by various properties of
the Fourier transformation, and the ways in which a better
exploitation of these properties has been the driving force behind
the discovery of more powerful methods.

In keeping with this philosophy, the theory is presented first,
followed by the crystallographic applications. There are ‘forward
references’ from mathematical results to the applications which
later invoke them (thus giving ‘real-life’ examples rather than
artificial ones), and ‘backward references’ as usual. In this way, the
internal logic of the mathematical developments – the surest guide
to future innovations – can be preserved, whereas the alternative
solution of relegating these to appendices tends on the contrary to
obscure that logic by subordinating it to that of the applications.

It is hoped that this attempt at an overall presentation of the main
features of Fourier transforms and of their ubiquitous role in
crystallography will be found useful by scientists both within and
outside the field.

1.3.2. The mathematical theory of the Fourier
transformation

1.3.2.1. Introduction

The Fourier transformation and the practical applications to
which it gives rise occur in three different forms which, although
they display a similar range of phenomena, normally require
distinct formulations and different proof techniques:

(i) Fourier transforms, in which both function and transform
depend on continuous variables;

(ii) Fourier series, which relate a periodic function to a discrete
set of coefficients indexed by n-tuples of integers;

(iii) discrete Fourier transforms, which relate finite-dimensional
vectors by linear operations representable by matrices.

At the same time, the most useful property of the Fourier
transformation – the exchange between multiplication and
convolution – is mathematically the most elusive and the one
which requires the greatest caution in order to avoid writing down
meaningless expressions.

It is the unique merit of Schwartz’s theory of distributions
(Schwartz, 1966) that it affords complete control over all the
troublesome phenomena which had previously forced mathemati-
cians to settle for a piecemeal, fragmented theory of the Fourier
transformation. By its ability to handle rigorously highly ‘singular’

25

International Tables for Crystallography (2006). Vol. B, Section 1.3.2, pp. 25–49.

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Ba/ch1o3v0001/sec1o3o2/


objects (especially �-functions, their derivatives, their tensor
products, their products with smooth functions, their translates
and lattices of these translates), distribution theory can deal with all
the major properties of the Fourier transformation as particular
instances of a single basic result (the exchange between multi-
plication and convolution), and can at the same time accommodate
the three previously distinct types of Fourier theories within a
unique framework. This brings great simplification to matters of
central importance in crystallography, such as the relations between

(a) periodization, and sampling or decimation;
(b) Shannon interpolation, and masking by an indicator function;
(c) section, and projection;
(d) differentiation, and multiplication by a monomial;
(e) translation, and phase shift.

All these properties become subsumed under the same theorem.
This striking synthesis comes at a slight price, which is the

relative complexity of the notion of distribution. It is first necessary
to establish the notion of topological vector space and to gain
sufficient control (or, at least, understanding) over convergence
behaviour in certain of these spaces. The key notion of metrizability
cannot be circumvented, as it underlies most of the constructs and
many of the proof techniques used in distribution theory. Most of
Section 1.3.2.2 builds up to the fundamental result at the end of
Section 1.3.2.2.6.2, which is basic to the definition of a distribution
in Section 1.3.2.3.4 and to all subsequent developments.

The reader mostly interested in applications will probably want
to reach this section by starting with his or her favourite topic in
Section 1.3.4, and following the backward references to the relevant
properties of the Fourier transformation, then to the proof of these
properties, and finally to the definitions of the objects involved.
Hopefully, he or she will then feel inclined to follow the forward
references and thus explore the subject from the abstract to the
practical. The books by Dieudonné (1969) and Lang (1965) are
particularly recommended as general references for all aspects of
analysis and algebra.

1.3.2.2. Preliminary notions and notation

Throughout this text, � will denote the set of real numbers, � the
set of rational (signed) integers and � the set of natural (unsigned)
integers. The symbol �n will denote the Cartesian product of n
copies of �:

�n � �� � � �� � �n times, n � 1�,
so that an element x of �n is an n-tuple of real numbers:

x � �x1, � � � , xn��
Similar meanings will be attached to �n and �n.

The symbol � will denote the set of complex numbers. If z � �,
its modulus will be denoted by �z�, its conjugate by �z (not z�), and its
real and imaginary parts by �� �z� and �� �z�:

�� �z� � 1
2�z	 �z�, �� �z� � 1

2i
�z
 �z��

If X is a finite set, then �X �will denote the number of its elements.
If mapping f sends an element x of set X to the element f �x� of set Y,
the notation

f � x �
� f �x�
will be used; the plain arrow� will be reserved for denoting limits,
as in

lim
�� 1	 x

p

� �p

� ex�

If X is any set and S is a subset of X, the indicator function �s of S
is the real-valued function on X defined by

�S�x� � 1 if x � S

� 0 if x �� S�

1.3.2.2.1. Metric and topological notions in �n

The set �n can be endowed with the structure of a vector space of
dimension n over �, and can be made into a Euclidean space by
treating its standard basis as an orthonormal basis and defining the
Euclidean norm:

�x� � �n
i�1

x2
i

� �1�2

�

By misuse of notation, x will sometimes also designate the
column vector of coordinates of x � �n; if these coordinates are
referred to an orthonormal basis of �n, then

�x� � �xT x�1�2,

where xT denotes the transpose of x.
The distance between two points x and y defined by d�x, y� �

�x
 y� allows the topological structure of � to be transferred to
�n, making it a metric space. The basic notions in a metric space are
those of neighbourhoods, of open and closed sets, of limit, of
continuity, and of convergence (see Section 1.3.2.2.6.1).

A subset S of �n is bounded if sup �x
 y� �  as x and y run
through S; it is closed if it contains the limits of all convergent
sequences with elements in S. A subset K of �n which is both
bounded and closed has the property of being compact, i.e. that
whenever K has been covered by a family of open sets, a finite
subfamily can be found which suffices to cover K. Compactness is a
very useful topological property for the purpose of proof, since it
allows one to reduce the task of examining infinitely many local
situations to that of examining only finitely many of them.

1.3.2.2.2. Functions over �n

Let � be a complex-valued function over �n. The support of �,
denoted Supp �, is the smallest closed subset of �n outside which �
vanishes identically. If Supp � is compact, � is said to have
compact support.

If t � �n, the translate of � by t, denoted �t�, is defined by

��t���x� � ��x
 t��
Its support is the geometric translate of that of �:

Supp �t� � �x	 t�x � Supp ���
If A is a non-singular linear transformation in �n, the image of �

by A, denoted A��, is defined by

�A����x� � ��A
1�x���
Its support is the geometric image of Supp � under A:

Supp A�� � �A�x��x � Supp ���
If S is a non-singular affine transformation in �n of the form

S�x� � A�x� 	 b

with A linear, the image of � by S is S�� � �b�A���, i.e.

�S����x� � ��A
1�x
 b���
Its support is the geometric image of Supp � under S:

Supp S�� � �S�x��x � Supp ���
It may be helpful to visualize the process of forming the image of

a function by a geometric operation as consisting of applying that
operation to the graph of that function, which is equivalent to
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applying the inverse transformation to the coordinates x. This use of
the inverse later affords the ‘left-representation property’ [see
Section 1.3.4.2.2.2(e)] when the geometric operations form a group,
which is of fundamental importance in the treatment of crystal-
lographic symmetry (Sections 1.3.4.2.2.4, 1.3.4.2.2.5).

1.3.2.2.3. Multi-index notation

When dealing with functions in n variables and their derivatives,
considerable abbreviation of notation can be obtained through the
use of multi-indices.

A multi-index p � �n is an n-tuple of natural integers:
p � �p1, � � � , pn�. The length of p is defined as

�p� ��n
i�1

pi,

and the following abbreviations will be used:

�i� xp � xp1
1 � � � xpn

n

�ii� Dif � 	f
	xi

� 	i f

�iii� Dpf � Dp1
1 � � �Dpn

n f � 	�p�f
	xp1

1 � � � 	xpn
n

�iv� q � p if and only if qi � pi for all i � 1, � � � , n

�v� p
 q � �p1 
 q1, � � � , pn 
 qn�
�vi� p� � p1�� � � �� pn�

�vii� p

q

� �
� p1

q1

� �
� � � �� pn

qn

� �
�

Leibniz’s formula for the repeated differentiation of products
then assumes the concise form

Dp�fg� �
�
q�p

p
q

� �
Dp
qfDqg,

while the Taylor expansion of f to order m about x � a reads

f �x� �
�
�p��m

1
p�
�Dpf �a���x
 a�p 	 o��x
 a�m��

In certain sections the notation �f will be used for the gradient
vector of f, and the notation ���T�f for the Hessian matrix of its
mixed second-order partial derivatives:

� �

	

	x1

��
�

	

	xn

�
�������

�
						


, �f �

	f
	x1

��
�

	f
	xn

�
�������

�
						


,

���T�f �

	2f

	x2
1

� � �
	2f

	x1	xn

��
� � �

� ��
�

	2f
	xn	x1

� � �
	2f
	x2

n

�
��������

�
							

�

1.3.2.2.4. Integration, Lp spaces

The Riemann integral used in elementary calculus suffers from
the drawback that vector spaces of Riemann-integrable functions
over �n are not complete for the topology of convergence in the

mean: a Cauchy sequence of integrable functions may converge to a
non-integrable function.

To obtain the property of completeness, which is fundamental in
functional analysis, it was necessary to extend the notion of integral.
This was accomplished by Lebesgue [see Berberian (1962),
Dieudonné (1970), or Chapter 1 of Dym & McKean (1972) and
the references therein, or Chapter 9 of Sprecher (1970)], and
entailed identifying functions which differed only on a subset of
zero measure in �n (such functions are said to be equal ‘almost
everywhere’). The vector spaces Lp��n� consisting of function
classes f modulo this identification for which

�f�p �
�
�n

� f �x��p dnx

� 1�p

� 

are then complete for the topology induced by the norm ���p: the
limit of every Cauchy sequence of functions in Lp is itself a function
in Lp (Riesz–Fischer theorem).

The space L1��n� consists of those function classes f such that

� f �1 �
�
�n
� f �x�� dnx � 

which are called summable or absolutely integrable. The convolu-
tion product:

� f � g��x� � �
�n

f �y�g�x
 y� dny

� �
�n

f �x
 y�g�y� dny � �g � f ��x�

is well defined; combined with the vector space structure of L1, it
makes L1 into a (commutative) convolution algebra. However, this
algebra has no unit element: there is no f � L1 such that f � g � g
for all g � L1; it has only approximate units, i.e. sequences �f
� such
that f
 � g tends to g in the L1 topology as 
 �. This is one of the
starting points of distribution theory.

The space L2��n� of square-integrable functions can be endowed
with a scalar product

� f , g� � �
�n

f �x�g�x� dnx

which makes it into a Hilbert space. The Cauchy–Schwarz
inequality

�� f , g�� � �� f , f ��g, g��1�2

generalizes the fact that the absolute value of the cosine of an angle
is less than or equal to 1.

The space L��n� is defined as the space of functions f such that

� f � � lim
p�� f �p � lim

p�
�
�n

� f �x��p dnx

� 1�p

� �

The quantity � f � is called the ‘essential sup norm’ of f, as it is the
smallest positive number which � f �x�� exceeds only on a subset of
zero measure in �n. A function f � L is called essentially
bounded.

1.3.2.2.5. Tensor products. Fubini’s theorem

Let f � L1��m�, g � L1��n�. Then the function

f � g � �x, y� �
� f �x�g�y�
is called the tensor product of f and g, and belongs to L1��m � �n�.
The finite linear combinations of functions of the form f � g span a
subspace of L1��m � �n� called the tensor product of L1��m� and
L1��n� and denoted L1��m� � L1��n�.
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The integration of a general function over �m � �n may be
accomplished in two steps according to Fubini’s theorem. Given
F � L1��m � �n�, the functions

F1 � x �
� �
�n

F�x, y� dny

F2 � y �
� �
�m

F�x, y� dmx

exist for almost all x � �m and almost all y � �n, respectively, are
integrable, and�

�m��n

F�x, y� dmx dny � �
�m

F1�x� dmx � �
�n

F2�y� dny�

Conversely, if any one of the integrals

�i� �
�m��n

�F�x, y�� dmx dny

�ii� �
�m

�
�n
�F�x, y�� dny

� 
dmx

�iii� �
�n

�
�m

�F�x, y�� dmx

� 
dny

is finite, then so are the other two, and the identity above holds. It is
then (and only then) permissible to change the order of integrations.

Fubini’s theorem is of fundamental importance in the study of
tensor products and convolutions of distributions.

1.3.2.2.6. Topology in function spaces

Geometric intuition, which often makes ‘obvious’ the topologi-
cal properties of the real line and of ordinary space, cannot be relied
upon in the study of function spaces: the latter are infinite-
dimensional, and several inequivalent notions of convergence
may exist. A careful analysis of topological concepts and of their
interrelationship is thus a necessary prerequisite to the study of
these spaces. The reader may consult Dieudonné (1969, 1970),
Friedman (1970), Trèves (1967) and Yosida (1965) for detailed
expositions.

1.3.2.2.6.1. General topology
Most topological notions are first encountered in the setting of

metric spaces. A metric space E is a set equipped with a distance
function d from E � E to the non-negative reals which satisfies:

�i� d�x, y� � d�y, x� �x, y � E (symmetry);

�ii� d�x, y� � 0 iff x � y (separation);

�iii� d�x, z� � d�x, y� 	 d�y, z� �x, y, z � E (triangular

inequality).

By means of d, the following notions can be defined: open balls,
neighbourhoods; open and closed sets, interior and closure;
convergence of sequences, continuity of mappings; Cauchy
sequences and completeness; compactness; connectedness. They
suffice for the investigation of a great number of questions in
analysis and geometry (see e.g. Dieudonné, 1969).

Many of these notions turn out to depend only on the properties
of the collection ��E� of open subsets of E: two distance functions
leading to the same ��E� lead to identical topological properties.
An axiomatic reformulation of topological notions is thus possible:
a topology in E is a collection ��E� of subsets of E which satisfy
suitable axioms and are deemed open irrespective of the way they
are obtained. From the practical standpoint, however, a topology
which can be obtained from a distance function (called a metrizable
topology) has the very useful property that the notions of closure,

limit and continuity may be defined by means of sequences. For non-
metrizable topologies, these notions are much more difficult to
handle, requiring the use of ‘filters’ instead of sequences.

In some spaces E, a topology may be most naturally defined by a
family of pseudo-distances �d����A, where each d� satisfies (i) and
(iii) but not (ii). Such spaces are called uniformizable. If for every
pair �x, y� � E � E there exists � � A such that d��x, y� �� 0, then
the separation property can be recovered. If furthermore a countable
subfamily of the d� suffices to define the topology of E, the latter
can be shown to be metrizable, so that limiting processes in E may
be studied by means of sequences.

1.3.2.2.6.2. Topological vector spaces
The function spaces E of interest in Fourier analysis have an

underlying vector space structure over the field � of complex
numbers. A topology on E is said to be compatible with a vector
space structure on E if vector addition [i.e. the map
�x, y� �
� x	 y] and scalar multiplication [i.e. the map
��, x� �
� �x] are both continuous; E is then called a topological
vector space. Such a topology may be defined by specifying a
‘fundamental system S of neighbourhoods of 0’, which can then be
translated by vector addition to construct neighbourhoods of other
points x �� 0.

A norm 
 on a vector space E is a non-negative real-valued
function on E � E such that

�i�� 
��x� � ���
�x� for all � � � and x � E;

�ii�� 
�x� � 0 if and only if x � 0;

�iii�� 
�x	 y� � 
�x� 	 
�y� for all x, y � E�

Subsets of E defined by conditions of the form 
�x� � r with r  0
form a fundamental system of neighbourhoods of 0. The
corresponding topology makes E a normed space. This topology
is metrizable, since it is equivalent to that derived from the
translation-invariant distance d�x, y� � 
�x
 y�. Normed spaces
which are complete, i.e. in which all Cauchy sequences converge,
are called Banach spaces; they constitute the natural setting for the
study of differential calculus.

A semi-norm � on a vector space E is a positive real-valued
function on E � E which satisfies (i�) and (iii�) but not (ii�). Given a
set � of semi-norms on E such that any pair (x, y) in E � E is
separated by at least one � � �, let B be the set of those subsets ��� r
of E defined by a condition of the form ��x� � r with � � � and
r  0; and let S be the set of finite intersections of elements of B.
Then there exists a unique topology on E for which S is a
fundamental system of neighbourhoods of 0. This topology is
uniformizable since it is equivalent to that derived from the family
of translation-invariant pseudo-distances �x, y� �
� ��x
 y�. It is
metrizable if and only if it can be constructed by the above
procedure with � a countable set of semi-norms. If furthermore E is
complete, E is called a Fréchet space.

If E is a topological vector space over �, its dual E� is the set of
all linear mappings from E to � (which are also called linear forms,
or linear functionals, over E). The subspace of E� consisting of all
linear forms which are continuous for the topology of E is called the
topological dual of E and is denoted E�. If the topology on E is
metrizable, then the continuity of a linear form T � E� at f � E can
be ascertained by means of sequences, i.e. by checking that the
sequence �T� fj�� of complex numbers converges to T� f � in �
whenever the sequence � fj� converges to f in E.

1.3.2.3. Elements of the theory of distributions

1.3.2.3.1. Origins

At the end of the 19th century, Heaviside proposed under the
name of ‘operational calculus’ a set of rules for solving a class of
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differential, partial differential and integral equations encountered
in electrical engineering (today’s ‘signal processing’). These rules
worked remarkably well but were devoid of mathematical
justification (see Whittaker, 1928). In 1926, Dirac introduced his
famous �-function [see Dirac (1958), pp. 58–61], which was found
to be related to Heaviside’s constructs. Other singular objects,
together with procedures to handle them, had already appeared in
several branches of analysis [Cauchy’s ‘principal values’; Hada-
mard’s ‘finite parts’ (Hadamard, 1932, 1952); Riesz’s regularization
methods for certain divergent integrals (Riesz, 1938, 1949)] as well
as in the theories of Fourier series and integrals (see e.g. Bochner,
1932, 1959). Their very definition often verged on violating the
rigorous rules governing limiting processes in analysis, so that
subsequent recourse to limiting processes could lead to erroneous
results; ad hoc precautions thus had to be observed to avoid
mistakes in handling these objects.

In 1945–1950, Laurent Schwartz proposed his theory of
distributions (see Schwartz, 1966), which provided a unified and
definitive treatment of all these questions, with a striking
combination of rigour and simplicity. Schwartz’s treatment of
Dirac’s �-function illustrates his approach in a most direct fashion.
Dirac’s original definition reads:

�i� ��x� � 0 for x �� 0,

�ii� �
�n��x� dnx � 1�

These two conditions are irreconcilable with Lebesgue’s theory of
integration: by (i), � vanishes almost everywhere, so that its integral
in (ii) must be 0, not 1.

A better definition consists in specifying that

�iii� �
�n��x���x� dnx � ��0�

for any function � sufficiently well behaved near x � 0. This is
related to the problem of finding a unit for convolution (Section
1.3.2.2.4). As will now be seen, this definition is still unsatisfactory.
Let the sequence � f
� in L1��n� be an approximate convolution
unit, e.g.

f
�x� � 


2�

� �1�2
exp�
1

2

2�x�2��

Then for any well behaved function � the integrals�
�n

f
�x���x� dnx

exist, and the sequence of their numerical values tends to ��0�. It is
tempting to combine this with (iii) to conclude that � is the limit of
the sequence � f
� as 
 �. However,

lim f
�x� � 0 as 
 �
almost everywhere in �n and the crux of the problem is that

��0� � lim

�

�
�n

f
�x���x� dnx

�� �
�n

lim

� fv�x�
� �

��x� dnx � 0

because the sequence � f
� does not satisfy the hypotheses of
Lebesgue’s dominated convergence theorem.

Schwartz’s solution to this problem is deceptively simple: the
regular behaviour one is trying to capture is an attribute not of the
sequence of functions � f
�, but of the sequence of continuous linear
functionals

T
 � � �
�
�
�n

f
�x���x� dnx

which has as a limit the continuous functional

T � � �
� ��0��
It is the latter functional which constitutes the proper definition of �.
The previous paradoxes arose because one insisted on writing down
the simple linear operation T in terms of an integral.

The essence of Schwartz’s theory of distributions is thus that,
rather than try to define and handle ‘generalized functions’ via
sequences such as � f
� [an approach adopted e.g. by Lighthill
(1958) and Erdélyi (1962)], one should instead look at them as
continuous linear functionals over spaces of well behaved
functions.

There are many books on distribution theory and its applications.
The reader may consult in particular Schwartz (1965, 1966),
Gel’fand & Shilov (1964), Bremermann (1965), Trèves (1967),
Challifour (1972), Friedlander (1982), and the relevant chapters of
Hörmander (1963) and Yosida (1965). Schwartz (1965) is
especially recommended as an introduction.

1.3.2.3.2. Rationale

The guiding principle which leads to requiring that the functions
� above (traditionally called ‘test functions’) should be well
behaved is that correspondingly ‘wilder’ behaviour can then be
accommodated in the limiting behaviour of the f
 while still keeping
the integrals

�
�n f
� dnx under control. Thus

(i) to minimize restrictions on the limiting behaviour of the f
 at
infinity, the �’s will be chosen to have compact support;

(ii) to minimize restrictions on the local behaviour of the f
 , the
�’s will be chosen infinitely differentiable.

To ensure further the continuity of functionals such as T
 with
respect to the test function � as the f
 go increasingly wild, very
strong control will have to be exercised in the way in which a
sequence ��j� of test functions will be said to converge towards a
limiting �: conditions will have to be imposed not only on the
values of the functions �j, but also on those of all their derivatives.
Hence, defining a strong enough topology on the space of test
functions � is an essential prerequisite to the development of a
satisfactory theory of distributions.

1.3.2.3.3. Test-function spaces

With this rationale in mind, the following function spaces will be
defined for any open subset � of �n (which may be the whole of
�n):

(a) ���� is the space of complex-valued functions over � which
are indefinitely differentiable;

(b) ���� is the subspace of ���� consisting of functions with
(unspecified) compact support contained in �n;

(c) �K��� is the subspace of ���� consisting of functions whose
(compact) support is contained within a fixed compact subset K of
�.

When � is unambiguously defined by the context, we will simply
write � ,�,�K .

It sometimes suffices to require the existence of continuous
derivatives only up to finite order m inclusive. The corresponding
spaces are then denoted ��m�,��m�,��m�K with the convention that if
m � 0, only continuity is required.

The topologies on these spaces constitute the most important
ingredients of distribution theory, and will be outlined in some
detail.

1.3.2.3.3.1. Topology on ����
It is defined by the family of semi-norms

� � ���� �
� �p� K��� � sup
x�K
�Dp��x��,

where p is a multi-index and K a compact subset of �. A
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fundamental system S of neighbourhoods of the origin in ���� is
given by subsets of ���� of the form

V�m, �, K� � �� � ������p� � m � �p, K��� � ��
for all natural integers m, positive real �, and compact subset K of �.
Since a countable family of compact subsets K suffices to cover �,
and since restricted values of � of the form � � 1�N lead to the same
topology, S is equivalent to a countable system of neighbourhoods
and hence ���� is metrizable.

Convergence in � may thus be defined by means of sequences. A
sequence ��
� in � will be said to converge to 0 if for any given
V �m, �, K� there exists 
0 such that �
 � V �m, �, K� whenever

  
0; in other words, if the �
 and all their derivatives Dp�


converge to 0 uniformly on any given compact K in �.

1.3.2.3.3.2. Topology on �k���
It is defined by the family of semi-norms

� � �K��� �
� �p��� � sup
x�K
�Dp��x��,

where K is now fixed. The fundamental system S of neighbourhoods
of the origin in �K is given by sets of the form

V �m, �� � �� � �K�����p� � m � �p��� � ���
It is equivalent to the countable subsystem of the V �m, 1�N�, hence
�K��� is metrizable.

Convergence in �K may thus be defined by means of sequences.
A sequence ��
� in �K will be said to converge to 0 if for any given
V �m, �� there exists 
0 such that �
 � V �m, �� whenever 
  
0; in
other words, if the �
 and all their derivatives Dp�
 converge to 0
uniformly in K.

1.3.2.3.3.3. Topology on ����
It is defined by the fundamental system of neighbourhoods of the

origin consisting of sets of the form

V ��m�, ����

� � � ������p� � m
 � sup
�x��


�Dp��x�� � �
 for all 


� �
,

where (m) is an increasing sequence �m
� of integers tending to	
and (�) is a decreasing sequence ��
� of positive reals tending to 0,
as 
 �.

This topology is not metrizable, because the sets of sequences
(m) and (�) are essentially uncountable. It can, however, be shown
to be the inductive limit of the topology of the subspaces �K , in the
following sense: V is a neighbourhood of the origin in � if and only
if its intersection with �K is a neighbourhood of the origin in �K for
any given compact K in �.

A sequence ��
� in � will thus be said to converge to 0 in � if all
the �
 belong to some �K (with K a compact subset of �
independent of 
) and if ��
� converges to 0 in �K .

As a result, a complex-valued functional T on � will be said to be
continuous for the topology of � if and only if, for any given
compact K in �, its restriction to �K is continuous for the topology
of �K , i.e. maps convergent sequences in �K to convergent
sequences in �.

This property of �, i.e. having a non-metrizable topology which
is the inductive limit of metrizable topologies in its subspaces �K ,
conditions the whole structure of distribution theory and dictates
that of many of its proofs.

1.3.2.3.3.4. Topologies on � �m�,��m�k ,��m�
These are defined similarly, but only involve conditions on

derivatives up to order m.

1.3.2.3.4. Definition of distributions

A distribution T on � is a linear form over ����, i.e. a map

T � � �
� �T ,��
which associates linearly a complex number �T ,�� to any
� � ����, and which is continuous for the topology of that
space. In the terminology of Section 1.3.2.2.6.2, T is an element of
�����, the topological dual of ����.

Continuity over � is equivalent to continuity over �K for all
compact K contained in �, and hence to the condition that for any
sequence ��
� in � such that

(i) Supp �
 is contained in some compact K independent of 
,
(ii) the sequences ��Dp�
 �� converge uniformly to 0 on K for all

multi-indices p;
then the sequence of complex numbers �T ,�
� converges to 0 in �.

If the continuity of a distribution T requires (ii) for �p� � m only,
T may be defined over ��m� and thus T � ���m�; T is said to be a
distribution of finite order m. In particular, for m � 0,��0� is the
space of continuous functions with compact support, and a
distribution T � ���0� is a (Radon) measure as used in the theory
of integration. Thus measures are particular cases of distributions.

Generally speaking, the larger a space of test functions, the
smaller its topological dual:

m � n � ��m� � ��n� � ���n� � ���m��

This clearly results from the observation that if the �’s are allowed
to be less regular, then less wildness can be accommodated in T if
the continuity of the map � �
� �T ,�� with respect to � is to be
preserved.

1.3.2.3.5. First examples of distributions

(i) The linear map � �
� ��,�� � ��0� is a measure (i.e. a
zeroth-order distribution) called Dirac’s measure or (improperly)
Dirac’s ‘�-function’.

(ii) The linear map � �
� ���a�,�� � ��a� is called Dirac’s
measure at point a � �n.

(iii) The linear map � �
� �
1�pDp��a� is a distribution of
order m � �p�  0, and hence is not a measure.

(iv) The linear map � �
��

0�

�
��
� is a distribution of
infinite order on �: the order of differentiation is bounded for each
� (because � has compact support) but is not as � varies.

(v) If �p
� is a sequence of multi-indices p
 � �p1
 , � � � , pn
�
such that �p
 � �  as 
 �, then the linear map
� �
��


0�Dp
���p
� is a distribution of infinite order on �n.

1.3.2.3.6. Distributions associated to locally integrable
functions

Let f be a complex-valued function over � such that�
K � f �x�� dnx exists for any given compact K in �; f is then called

locally integrable.
The linear mapping from ���� to � defined by

� �
� �
�

f �x���x� dnx

may then be shown to be continuous over ����. It thus defines a
distribution Tf � �����:

�Tf ,�� � �
�

f �x���x� dnx�

As the continuity of Tf only requires that � � ��0����, Tf is actually
a Radon measure.
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It can be shown that two locally integrable functions f and g
define the same distribution, i.e.

�Tf ,�� � �TK ,�� for all � � �,

if and only if they are equal almost everywhere. The classes of
locally integrable functions modulo this equivalence form a vector
space denoted L1

loc���; each element of L1
loc��� may therefore be

identified with the distribution Tf defined by any one of its
representatives f.

1.3.2.3.7. Support of a distribution

A distribution T � ����� is said to vanish on an open subset � of
� if it vanishes on all functions in ����, i.e. if �T ,�� � 0 whenever
� � ����.

The support of a distribution T, denoted Supp T, is then defined as
the complement of the set-theoretic union of those open subsets �
on which T vanishes; or equivalently as the smallest closed subset of
� outside which T vanishes.

When T � Tf for f � L1
loc���, then Supp T � Supp f , so that the

two notions coincide. Clearly, if Supp T and Supp � are disjoint
subsets of �, then �T ,�� � 0.

It can be shown that any distribution T � �� with compact
support may be extended from � to � while remaining continuous,
so that T � � �; and that conversely, if S � � �, then its restriction T to
� is a distribution with compact support. Thus, the topological dual
� � of � consists of those distributions in �� which have compact
support. This is intuitively clear since, if the condition of having
compact support is fulfilled by T, it needs no longer be required of
�, which may then roam through � rather than �.

1.3.2.3.8. Convergence of distributions

A sequence �Tj� of distributions will be said to converge in �� to
a distribution T as j � if, for any given � � �, the sequence of
complex numbers ��Tj,��� converges in � to the complex number
�T ,��.

A series
�

j�0Tj of distributions will be said to converge in ��
and to have distribution S as its sum if the sequence of partial sums
Sk �

�k
j�0 converges to S.

These definitions of convergence in �� assume that the limits T
and S are known in advance, and are distributions. This raises the
question of the completeness of ��: if a sequence �Tj� in �� is such
that the sequence ��Tj,��� has a limit in � for all � � �, does the
map

� �
� lim
j�

�Tj,��

define a distribution T � ��? In other words, does the limiting
process preserve continuity with respect to �? It is a remarkable
theorem that, because of the strong topology on �, this is actually
the case. An analogous statement holds for series. This notion of
convergence does not coincide with any of the classical notions
used for ordinary functions: for example, the sequence ��
� with
�
�x� � cos 
x converges to 0 in �����, but fails to do so by any of
the standard criteria.

An example of convergent sequences of distributions is provided
by sequences which converge to �. If � f
� is a sequence of locally
summable functions on �n such that

(i)
�
�x�� b f
�x� dnx � 1 as 
 � for all b  0;

(ii)
�

a��x��1�a� f
�x�� dnx � 0 as 
 � for all 0 � a � 1;
(iii) there exists d  0 and M  0 such that

�
�x�� d � f
�x�� dnx �

M for all 
;
then the sequence �Tf
 � of distributions converges to � in ����n�.

1.3.2.3.9. Operations on distributions

As a general rule, the definitions are chosen so that the operations
coincide with those on functions whenever a distribution is
associated to a function.

Most definitions consist in transferring to a distribution T an
operation which is well defined on � � � by ‘transposing’ it in the
duality product �T ,��; this procedure will map T to a new
distribution provided the original operation maps � continuously
into itself.

1.3.2.3.9.1. Differentiation

(a) Definition and elementary properties
If T is a distribution on �n, its partial derivative 	iT with respect

to xi is defined by

�	iT ,�� � 
�T , 	i��
for all � � �. This does define a distribution, because the partial

differentiations � �
� 	i� are continuous for the topology of �.
Suppose that T � Tf with f a locally integrable function such that

	i f exists and is almost everywhere continuous. Then integration
by parts along the xi axis gives�
�n

	i f �xl, � � � , xi, � � � , xn���xl, � � � , xi, � � � , xn� dxi

� � f ���xl, � � � , 	, � � � , xn� 
 � f ���xl, � � � , 
, � � � , xn�

 �

�n

f �xl, � � � , xi, � � � , xn�	i��xl, � � � , xi, � � � , xn� dxi;

the integrated term vanishes, since � has compact support, showing
that 	iTf � T	i f .

The test functions � � � are infinitely differentiable. Therefore,
transpositions like that used to define 	iT may be repeated, so that
any distribution is infinitely differentiable. For instance,

�	2
ijT ,�� � 
�	jT , 	i�� � �T , 	2

ij��,
�DpT ,�� � �
1��p��T , Dp��,

�	T ,�� � �T ,	��,
where 	 is the Laplacian operator. The derivatives of Dirac’s �
distribution are

�Dp�,�� � �
1��p���, Dp�� � �
1��p�Dp��0��
It is remarkable that differentiation is a continuous operation for

the topology on ��: if a sequence �Tj� of distributions converges to
distribution T, then the sequence �DpTj� of derivatives converges to
DpT for any multi-index p, since as j �
�DpTj,�� � �
1��p��Tj, Dp�� � �
1��p��T , Dp�� � �DpT ,���

An analogous statement holds for series: any convergent series of
distributions may be differentiated termwise to all orders. This
illustrates how ‘robust’ the constructs of distribution theory are in
comparison with those of ordinary function theory, where similar
statements are notoriously untrue.

(b) Differentiation under the duality bracket
Limiting processes and differentiation may also be carried out

under the duality bracket �, � as under the integral sign with ordinary
functions. Let the function � � ��x,�� depend on a parameter � �

 and a vector x � �n in such a way that all functions

�� � x �
� ��x,��
be in ���n� for all � � 
. Let T � ����n� be a distribution, let

I��� � �T ,���
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and let �0 � 
 be given parameter value. Suppose that, as � runs
through a small enough neighbourhood of �0,

(i) all the �� have their supports in a fixed compact subset K of
�n;

(ii) all the derivatives Dp�� have a partial derivative with
respect to � which is continuous with respect to x and �.

Under these hypotheses, I��� is differentiable (in the usual sense)
with respect to � near �0, and its derivative may be obtained by
‘differentiation under the �, � sign’:

dI
d�
� �T , 	�����

(c) Effect of discontinuities
When a function f or its derivatives are no longer continuous, the

derivatives DpTf of the associated distribution Tf may no longer
coincide with the distributions associated to the functions Dpf .

In dimension 1, the simplest example is Heaviside’s unit step
function Y �Y�x� � 0 for x � 0, Y�x� � 1 for x � 0�:

��TY ��,�� � 
��TY �,��� � 

�	
0
���x� dx � ��0� � ��,���

Hence �TY �� � �, a result long used ‘heuristically’ by electrical
engineers [see also Dirac (1958)].

Let f be infinitely differentiable for x � 0 and x  0 but have
discontinuous derivatives f �m� at x � 0 [ f �0� being f itself] with
jumps �m � f �m��0	� 
 f �m��0
�. Consider the functions:

g0 � f 
 �0Y

g1 � g�0 
 �1Y












gk � g�k
1 
 �kY �

The gk are continuous, their derivatives g�k are continuous almost
everywhere [which implies that �Tgk �� � Tg�k

and g�k � f �k	1� almost
everywhere]. This yields immediately:

�Tf �� � Tf � 	 �0�

�Tf ��� � Tf �� 	 �0�
� 	 �1�




















�Tf ��m� � Tf �m� 	 �0�

�m
1� 	 � � �	 �m
1��




















Thus the ‘distributional derivatives’ �Tf ��m� differ from the usual
functional derivatives Tf �m� by singular terms associated with
discontinuities.

In dimension n, let f be infinitely differentiable everywhere
except on a smooth hypersurface S, across which its partial
derivatives show discontinuities. Let �0 and �
 denote the
discontinuities of f and its normal derivative 	
� across S (both
�0 and �
 are functions of position on S), and let ��S� and 	
��S� be
defined by

���S�,�� �
�
S
� dn
1S

�	
��S�,�� � 

�
S
	
� dn
1S�

Integration by parts shows that

	iTf � T	i f 	 �0 cos �i��S�,

where �i is the angle between the xi axis and the normal to S along
which the jump �0 occurs, and that the Laplacian of Tf is given by

	�Tf � � T	f 	 �
��S� 	 	
��0��S���
The latter result is a statement of Green’s theorem in terms of
distributions. It will be used in Section 1.3.4.4.3.5 to calculate the
Fourier transform of the indicator function of a molecular envelope.

1.3.2.3.9.2. Integration of distributions in dimension 1
The reverse operation from differentiation, namely calculating

the ‘indefinite integral’ of a distribution S, consists in finding a
distribution T such that T � � S.

For all � � � such that � � �� with � � �, we must have

�T ,�� � 
�S,���
This condition defines T in a ‘hyperplane’ � of �, whose equation

�1,�� � �1,��� � 0

reflects the fact that � has compact support.
To specify T in the whole of �, it suffices to specify the value of

�T ,�0� where �0 � � is such that �1,�0� � 1: then any � � � may
be written uniquely as

� � ��0 	 ��

with

� � �1,��, � � �
 ��0, ��x� � �x
0
��t� dt,

and T is defined by

�T ,�� � ��T ,�0� 
 �S,���
The freedom in the choice of �0 means that T is defined up to an
additive constant.

1.3.2.3.9.3. Multiplication of distributions by functions
The product �T of a distribution T on �n by a function � over �n

will be defined by transposition:

��T ,�� � �T ,��� for all � � ��

In order that �T be a distribution, the mapping � �
� �� must send
���n� continuously into itself; hence the multipliers � must be
infinitely differentiable. The product of two general distributions
cannot be defined. The need for a careful treatment of multipliers of
distributions will become clear when it is later shown (Section
1.3.2.5.8) that the Fourier transformation turns convolutions into
multiplications and vice versa.

If T is a distribution of order m, then � needs only have
continuous derivatives up to order m. For instance, � is a distribution
of order zero, and �� � ��0�� is a distribution provided � is
continuous; this relation is of fundamental importance in the theory
of sampling and of the properties of the Fourier transformation
related to sampling (Sections 1.3.2.6.4, 1.3.2.6.6). More generally,
Dp� is a distribution of order �p�, and the following formula holds
for all � � ��m� with m � �p�:

��Dp�� �
�
q�p

�
1��p
q� p
q

� �
�Dp
q���0�Dq��

The derivative of a product is easily shown to be

	i��T� � �	i��T 	 ��	iT�
and generally for any multi-index p

Dp��T� �
�
q�p

p
q

� �
�Dp
q���0�DqT �
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1.3.2.3.9.4. Division of distributions by functions
Given a distribution S on �n and an infinitely differentiable

multiplier function �, the division problem consists in finding a
distribution T such that �T � S.

If � never vanishes, T � S�� is the unique answer. If n � 1, and
if � has only isolated zeros of finite order, it can be reduced to a
collection of cases where the multiplier is xm, for which the general
solution can be shown to be of the form

T � U 	 �m
1

i�0
ci�

�i�,

where U is a particular solution of the division problem xmU � S
and the ci are arbitrary constants.

In dimension n  1, the problem is much more difficult, but is of
fundamental importance in the theory of linear partial differential
equations, since the Fourier transformation turns the problem of
solving these into a division problem for distributions [see
Hörmander (1963)].

1.3.2.3.9.5. Transformation of coordinates
Let � be a smooth non-singular change of variables in �n, i.e. an

infinitely differentiable mapping from an open subset � of �n to ��
in �n, whose Jacobian

J��� � det
	��x�
	x

� �

vanishes nowhere in �. By the implicit function theorem, the
inverse mapping �
1 from �� to � is well defined.

If f is a locally summable function on �, then the function ��f
defined by

���f ��x� � f ��
1�x��
is a locally summable function on ��, and for any � � ����� we
may write:�

��
���f ��x���x� dnx � �

��
f ��
1�x����x� dnx

� �
��

f �y�����y���J���� dny by x � ��y��

In terms of the associated distributions

�T��f ,�� � �Tf , �J������
1�����
This operation can be extended to an arbitrary distribution T by

defining its image ��T under coordinate transformation � through

���T ,�� � �T , �J������
1����,
which is well defined provided that � is proper, i.e. that �
1�K� is
compact whenever K is compact.

For instance, if � � x �
� x	 a is a translation by a vector a in
�n, then �J���� � 1; �� is denoted by �a, and the translate �aT of a
distribution T is defined by

��aT ,�� � �T , �
a���
Let A � x �
� Ax be a linear transformation defined by a non-

singular matrix A. Then J�A� � det A, and

�A�T ,�� � �det A��T , �A
1�����
This formula will be shown later (Sections 1.3.2.6.5, 1.3.4.2.1.1) to
be the basis for the definition of the reciprocal lattice.

In particular, if A � 
I, where I is the identity matrix, A is an
inversion through a centre of symmetry at the origin, and denoting
A�� by �� we have:

��T ,�� � �T , ����

T is called an even distribution if �T � T , an odd distribution if
�T � 
T .

If A � �I with �  0, A is called a dilation and

�A�T ,�� � �n�T , �A
1�����
Writing symbolically � as ��x� and A�� as ��x���, we have:

��x��� � �n��x��
If n � 1 and f is a function with isolated simple zeros xj, then in the
same symbolic notation

�� f �x�� �
�

j

1
� f ��xj�� ��xj�,

where each �j � 1�� f ��xj�� is analogous to a ‘Lorentz factor’ at zero
xj.

1.3.2.3.9.6. Tensor product of distributions
The purpose of this construction is to extend Fubini’s theorem to

distributions. Following Section 1.3.2.2.5, we may define the tensor
product L1

loc��m� � L1
loc��n� as the vector space of finite linear

combinations of functions of the form

f � g � �x, y� �
� f �x�g�y�,
where x � �m, y � �n, f � L1

loc��m� and g � L1
loc��n�.

Let Sx and Ty denote the distributions associated to f and g,
respectively, the subscripts x and y acting as mnemonics for �m and
�n. It follows from Fubini’s theorem (Section 1.3.2.2.5) that
f � g � L1

loc��m � �n�, and hence defines a distribution over
�m � �n; the rearrangement of integral signs gives

�Sx � Ty,�x� y� � �Sx, �Ty,�x� y�� � �Ty, �Sx,�x� y��
for all �x� y � ���m � �n�. In particular, if ��x, y� � u�x�v�y�with
u � ���m�, v � ���n�, then

�S � T , u� v� � �S, u��T , v��
This construction can be extended to general distributions S �

����m� and T � ����n�. Given any test function � � ���m � �n�,
let �x denote the map y �
� ��x, y�; let �y denote the map
x �
� ��x, y�; and define the two functions ��x� � �T ,�x� and
��y� � �S,�y�. Then, by the lemma on differentiation under the �, �
sign of Section 1.3.2.3.9.1, � � ���m�,� � ���n�, and there exists
a unique distribution S � T such that

�S � T ,�� � �S, �� � �T ,���
S � T is called the tensor product of S and T.

With the mnemonic introduced above, this definition reads
identically to that given above for distributions associated to locally
integrable functions:

�Sx � Ty,�x� y� � �Sx, �Ty,�x� y�� � �Ty, �Sx,�x� y���
The tensor product of distributions is associative:

�R � S� � T � R � �S � T��
Derivatives may be calculated by

Dp
xDq

y�Sx � Ty� � �Dp
xSx� � �Dq

yTy��
The support of a tensor product is the Cartesian product of the
supports of the two factors.

1.3.2.3.9.7. Convolution of distributions
The convolution f � g of two functions f and g on �n is defined by

� f � g��x� � �
�n

f �y�g�x
 y� dny � �
�n

f �x
 y�g�y� dny
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whenever the integral exists. This is the case when f and g are both
in L1��n�; then f � g is also in L1��n�. Let S, T and W denote the
distributions associated to f, g and f � g, respectively: a change of
variable immediately shows that for any � � ���n�,

�W ,�� � �
�n��n

f �x�g�y���x	 y� dnx dny�

Introducing the map � from �n � �n to �n defined by
��x, y� � x	 y, the latter expression may be written:

�Sx � Ty,� � ��
(where � denotes the composition of mappings) or by a slight abuse
of notation:

�W ,�� � �Sx � Ty,��x	 y���
A difficulty arises in extending this definition to general

distributions S and T because the mapping � is not proper: if K is
compact in �n, then �
1�K� is a cylinder with base K and generator
the ‘second bisector’ x	 y � 0 in �n � �n. However, �S � T ,� �
�� is defined whenever the intersection between Supp �S � T� �
�Supp S� � �Supp T� and �
1�Supp �� is compact.

We may therefore define the convolution S � T of two
distributions S and T on �n by

�S � T ,�� � �S � T ,� � �� � �Sx � Ty,��x	 y��
whenever the following support condition is fulfilled:

‘the set ��x, y��x � A, y � B, x	 y � K� is compact in �n � �n for all K
compact in �n’.

The latter condition is met, in particular, if S or T has compact
support. The support of S � T is easily seen to be contained in the
closure of the vector sum

A	 B � �x	 y�x � A, y � B��
Convolution by a fixed distribution S is a continuous operation

for the topology on ��: it maps convergent sequences �Tj� to
convergent sequences �S � Tj�. Convolution is commutative:
S � T � T � S.

The convolution of p distributions T1, � � � , Tp with supports
A1, � � � , Ap can be defined by

�T1 � � � � � Tp,�� � ��T1�x1
� � � �� �Tp�xp

,��x1 	 � � �	 xp��
whenever the following generalized support condition:

‘the set ��x1, � � � , xp��x1 � A1, � � � , xp � Ap, x1 	 � � �	 xp � K� is com-
pact in ��n�p for all K compact in �n’

is satisfied. It is then associative. Interesting examples of
associativity failure, which can be traced back to violations of the
support condition, may be found in Bracewell (1986, pp. 436–437).

It follows from previous definitions that, for all distributions
T � ��, the following identities hold:

(i) � � T � T : � is the unit convolution;
(ii) ��a� � T � �aT : translation is a convolution with the

corresponding translate of �;
(iii) �Dp�� � T � DpT : differentiation is a convolution with the

corresponding derivative of �;
(iv) translates or derivatives of a convolution may be obtained

by translating or differentiating any one of the factors: convolution
‘commutes’ with translation and differentiation, a property used in
Section 1.3.4.4.7.7 to speed up least-squares model refinement for
macromolecules.

The latter property is frequently used for the purpose of
regularization: if T is a distribution, � an infinitely differentiable
function, and at least one of the two has compact support, then T � �
is an infinitely differentiable ordinary function. Since sequences

��
� of such functions � can be constructed which have compact
support and converge to �, it follows that any distribution T can be
obtained as the limit of infinitely differentiable functions T � �
 . In
topological jargon: ���n� is ‘everywhere dense’ in ����n�. A
standard function in � which is often used for such proofs is defined
as follows: put

��x� � 1
A

exp 
 1
1
 x2

� �
for �x� � 1,

� 0 for �x� � 1,

with

A �
�	1


1

exp 
 1
1
 x2

� �
dx

(so that � is in � and is normalized), and put

���x� � 1
�
�

x
�

� �
in dimension 1,

���x� �
�n

j�1

���xj� in dimension n�

Another related result, also proved by convolution, is the
structure theorem: the restriction of a distribution T � ����n� to
a bounded open set � in �n is a derivative of finite order of a
continuous function.

Properties (i) to (iv) are the basis of the symbolic or operational
calculus (see Carslaw & Jaeger, 1948; Van der Pol & Bremmer,
1955; Churchill, 1958; Erdélyi, 1962; Moore, 1971) for solving
integro-differential equations with constant coefficients by turning
them into convolution equations, then using factorization methods
for convolution algebras (Schwartz, 1965).

1.3.2.4. Fourier transforms of functions

1.3.2.4.1. Introduction

Given a complex-valued function f on �n subject to suitable
regularity conditions, its Fourier transform 	 � f � and Fourier
cotransform �	 � f � are defined as follows:

	 � f ���� � �
�n

f �x� exp�
2�i� � x� dnx

�	 � f ���� � �
�n

f �x� exp�	2�i� � x� dnx,

where � � x ��n
i�1�ixi is the ordinary scalar product. The

terminology and sign conventions given above are the standard
ones in mathematics; those used in crystallography are slightly
different (see Section 1.3.4.2.1.1). These transforms enjoy a number
of remarkable properties, whose natural settings entail different
regularity assumptions on f : for instance, properties relating to
convolution are best treated in L1��n�, while Parseval’s theorem
requires the Hilbert space structure of L2��n�. After a brief review
of these classical properties, the Fourier transformation will be
examined in a space 
 ��n� particularly well suited to accommodat-
ing the full range of its properties, which will later serve as a space
of test functions to extend the Fourier transformation to
distributions.

There exists an abundant literature on the ‘Fourier integral’. The
books by Carslaw (1930), Wiener (1933), Titchmarsh (1948),
Katznelson (1968), Sneddon (1951, 1972), and Dym & McKean
(1972) are particularly recommended.
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1.3.2.4.2. Fourier transforms in L1

1.3.2.4.2.1. Linearity
Both transformations 	 and �	 are obviously linear maps from L1

to L when these spaces are viewed as vector spaces over the field
� of complex numbers.

1.3.2.4.2.2. Effect of affine coordinate transformations
	 and �	 turn translations into phase shifts:

	 ��a f ���� � exp�
2�i� � a�	 � f ����
�	 ��a f ���� � exp�	2�i� � a� �	 � f �����

Under a general linear change of variable x �
� Ax with non-
singular matrix A, the transform of A�f is

	 �A�f ���� � �
�n

f �A
1x� exp�
2�i� � x� dnx

� �
�n

f �y� exp�
2�i�AT�� � y��det A� dny

by x � Ay

� �det A�	 � f ��AT��
i.e.

	 �A�f � � �det A���A
1�T ��	 � f �
and similarly for �	 . The matrix �A
1�T is called the contragredient
of matrix A.

Under an affine change of coordinates x �
� S�x� � Ax	 b with
non-singular matrix A, the transform of S�f is given by

	 �S�f ��� � � 	 ��b�A�f �����
� exp�
2�i� � b�	 �A�f ����
� exp�
2�i� � b��det A�	 � f ��AT� �

with a similar result for �	 , replacing 
i by +i.

1.3.2.4.2.3. Conjugate symmetry
The kernels of the Fourier transformations 	 and �	 satisfy the

following identities:

exp� 2�i� � x� � exp � 2�i� � �
x�� � exp � 2�i�
�� � x��
As a result the transformations 	 and �	 themselves have the
following ‘conjugate symmetry’ properties [where the notation
�f �x� � f �
x� of Section 1.3.2.2.2 will be used]:

	 � f ���� � 	 ��f ��
�� � �
	 ��f ��� �

	 � f ���� � 	 ���f �����
Therefore,

(i) f real ! f � �f ! 	 � f � � �	 � f � ! 	 � f ���� � 	 � f ��
� � �
	 � f � is said to possess Hermitian symmetry;

(ii) f centrosymmetric ! f � �f ! 	 � f � � 	 ��f �;
(iii) f real centrosymmetric ! f � �f � �f ! 	 � f � � 	 � f � �
�	 � f � ! 	 � f � real centrosymmetric.
Conjugate symmetry is the basis of Friedel’s law (Section

1.3.4.2.1.4) in crystallography.

1.3.2.4.2.4. Tensor product property
Another elementary property of 	 is its naturality with respect to

tensor products. Let u � L1��m� and v � L1��n�, and let
	 x,	 y,	 x� y denote the Fourier transformations in
L1��m�, L1��n� and L1��m � �n�, respectively. Then

	 x� y�u� v� � 	 x�u� � 	 y�v��
Furthermore, if f � L1��m � �n�, then 	 y� f � � L1��m� as a
function of x and 	 x� f � � L1��n� as a function of y, and

	 x� y� f � � 	 x�	 y� f �� � 	 y�	 x� f ���
This is easily proved by using Fubini’s theorem and the fact that
�� ,�� � �x, y� � � � x	 � � y, where x, � � �m, y,� � �n. This
property may be written:

	 x� y � 	 x � 	 y�

1.3.2.4.2.5. Convolution property
If f and g are summable, their convolution f � g exists and is

summable, and

	 � f � g���� � �
�n

�
�n

f �y�g�x
 y� dny

� �
exp�
2�i� � x� dnx�

With x � y	 z, so that

exp�
2�i� � x� � exp�
2�i� � y� exp�
2�i� � z�,
and with Fubini’s theorem, rearrangement of the double integral
gives:

	 � f � g� � 	 � f � � 	 �g�
and similarly

�	 � f � g� � �	 � f � � �	 �g��
Thus the Fourier transform and cotransform turn convolution into
multiplication.

1.3.2.4.2.6. Reciprocity property
In general, 	 � f � and �	 � f � are not summable, and hence cannot

be further transformed; however, as they are essentially bounded,
their products with the Gaussians Gt��� � exp�
2�2���2t� are
summable for all t  0, and it can be shown that

f � lim
t�0

�	 �Gt	 � f �� � lim
t�0

	 �Gt
�	 � f ��,

where the limit is taken in the topology of the L1 norm ���1. Thus 	
and �	 are (in a sense) mutually inverse, which justifies the common
practice of calling �	 the ‘inverse Fourier transformation’.

1.3.2.4.2.7. Riemann–Lebesgue lemma
If f � L1��n�, i.e. is summable, then 	 � f � and �	 � f � exist and

are continuous and essentially bounded:

�	 � f �� � � �	 � f �� � � f �1�

In fact one has the much stronger property, whose statement
constitutes the Riemann–Lebesgue lemma, that 	 � f ���� and
�	 � f ���� both tend to zero as ��� � .

1.3.2.4.2.8. Differentiation
Let us now suppose that n � 1 and that f � L1��� is

differentiable with f � � L1���. Integration by parts yields

	 � f ����� � �	



f ��x� exp�
2�i� � x� dx

� � f �x� exp�
2�i� � x��	

	 2�i�

�	



f �x� exp�
2�i� � x� dx�

Since f � is summable, f has a limit when x �  , and this limit
must be 0 since f is summable. Therefore
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	 � f ����� � �2�i��	 � f ����
with the bound

�2��	 � f �� � � f ��1

so that �	 � f ����� decreases faster than 1���� � .
This result can be easily extended to several dimensions and to

any multi-index m: if f is summable and has continuous summable
partial derivatives up to order �m�, then

	 �Dmf ���� � �2�i��m	 � f ����
and

��2���m	 � f �� � �Dmf �1�

Similar results hold for �	 , with 2�i� replaced by 
2�i� . Thus,
the more differentiable f is, with summable derivatives, the faster
	 � f � and �	 � f � decrease at infinity.

The property of turning differentiation into multiplication by a
monomial has many important applications in crystallography, for
instance differential syntheses (Sections 1.3.4.2.1.9, 1.3.4.4.7.2,
1.3.4.4.7.5) and moment-generating functions [Section
1.3.4.5.2.1(c)].

1.3.2.4.2.9. Decrease at infinity
Conversely, assume that f is summable on �n and that f decreases

fast enough at infinity for xmf also to be summable, for some multi-
index m. Then the integral defining 	 � f � may be subjected to the
differential operator Dm, still yielding a convergent integral:
therefore Dm	 � f � exists, and

Dm�	 � f ����� � 	 ��
2�ix�mf ����
with the bound

�Dm�	 � f ��� � ��2�x�mf �1�

Similar results hold for �	 , with 
2�ix replaced by 2�ix. Thus,
the faster f decreases at infinity, the more 	 � f � and �	 � f � are
differentiable, with bounded derivatives. This property is the
converse of that described in Section 1.3.2.4.2.8, and their
combination is fundamental in the definition of the function space

 in Section 1.3.2.4.4.1, of tempered distributions in Section
1.3.2.5, and in the extension of the Fourier transformation to them.

1.3.2.4.2.10. The Paley–Wiener theorem
An extreme case of the last instance occurs when f has compact

support: then 	 � f � and �	 � f � are so regular that they may be
analytically continued from �n to �n where they are entire
functions, i.e. have no singularities at finite distance (Paley &
Wiener, 1934). This is easily seen for 	 � f �: giving vector � � �n a
vector � � �n of imaginary parts leads to

	 � f ��� 	 i�� � �
�n

f �x� exp�
2�i�� 	 i�� � x� dnx

� 	 �exp�2�� � x�f ����,
where the latter transform always exists since exp�2�� � x�f is
summable with respect to x for all values of �. This analytic
continuation forms the basis of the saddlepoint method in
probability theory [Section 1.3.4.5.2.1( f )] and leads to the use of
maximum-entropy distributions in the statistical theory of direct
phase determination [Section 1.3.4.5.2.2(e)].

By Liouville’s theorem, an entire function in �n cannot vanish
identically on the complement of a compact subset of �n without
vanishing everywhere: therefore 	 � f � cannot have compact
support if f has, and hence ���n� is not stable by Fourier
transformation.

1.3.2.4.3. Fourier transforms in L2

Let f belong to L2��n�, i.e. be such that

� f �2 �
�
�n

� f �x��2 dnx

� 1�2

� �

1.3.2.4.3.1. Invariance of L2

	 � f � and �	 � f � exist and are functions in L2, i.e. 	 L2 � L2,
�	 L2 � L2.

1.3.2.4.3.2. Reciprocity
	 � �	 � f �� � f and �	 �	 � f �� � f , equality being taken as ‘almost

everywhere’ equality. This again leads to calling �	 the ‘inverse
Fourier transformation’ rather than the Fourier cotransformation.

1.3.2.4.3.3. Isometry
	 and �	 preserve the L2 norm:

�	 � f ��2 � � �	 � f ��2 � � f �2 (Parseval’s/Plancherel’s theorem)�

This property, which may be written in terms of the inner product
(,) in L2��n� as

�	 � f �,	 �g�� � � �	 � f �, �	 �g�� � � f , g�,
implies that 	 and �	 are unitary transformations of L2��n� into
itself, i.e. infinite-dimensional ‘rotations’.

1.3.2.4.3.4. Eigenspace decomposition of L2

Some light can be shed on the geometric structure of these
rotations by the following simple considerations. Note that

	 2� f ��x� � �
�n
	 � f ���� exp�
2�ix � �� dn�

� �	 �	 � f ���
x� � f �
x�
so that 	 4 (and similarly �	 4) is the identity map. Any eigenvalue of
	 or �	 is therefore a fourth root of unity, i.e.  1 or  i, and L2��n�
splits into an orthogonal direct sum

H0 �H1 �H2 �H3,

where 	 (respectively �	 ) acts in each subspace Hk�k � 0, 1, 2, 3�
by multiplication by �
i�k . Orthonormal bases for these subspaces
can be constructed from Hermite functions (cf. Section 1.3.2.4.4.2)
This method was used by Wiener (1933, pp. 51–71).

1.3.2.4.3.5. The convolution theorem and the isometry
property

In L2, the convolution theorem (when applicable) and the
Parseval/Plancherel theorem are not independent. Suppose that f,
g, f � g and f � g are all in L2 (without questioning whether these
properties are independent). Then f � g may be written in terms of
the inner product in L2 as follows:

� f � g��x� � �
�n

f �x
 y�g�y� dny � �
�n

��f �y
 x�g�y� dny,

i.e.

� f � g��x� � ��x
��f , g��

Invoking the isometry property, we may rewrite the right-hand
side as
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�	 ��x
��f �,	 �g�� � �exp�
2�ix � � �	 � f �� ,	 �g�� �

� �
�n
�	 � f � � 	 �g���x�

� exp�	2�ix � �� dn�

� �	 �	 � f � � 	 �g��,
so that the initial identity yields the convolution theorem.

To obtain the converse implication, note that

� f , g� � �
�n

f �y�g�y� dny � � ��f � g��0�

� �	 �	 � ��f � � 	 �g���0�
� �

�n

	 � f ����	 �g���� dn� � �	 � f �,	 �g��,

where conjugate symmetry (Section 1.3.2.4.2.2) has been used.
These relations have an important application in the calculation

by Fourier transform methods of the derivatives used in the
refinement of macromolecular structures (Section 1.3.4.4.7).

1.3.2.4.4. Fourier transforms in 


1.3.2.4.4.1. Definition and properties of 

The duality established in Sections 1.3.2.4.2.8 and 1.3.2.4.2.9

between the local differentiability of a function and the rate of
decrease at infinity of its Fourier transform prompts one to consider
the space 
 ��n� of functions f on �n which are infinitely
differentiable and all of whose derivatives are rapidly decreasing,
so that for all multi-indices k and p

�xkDpf ��x� � 0 as �x� � �

The product of f � 
 by any polynomial over �n is still in 
 (
 is
an algebra over the ring of polynomials). Furthermore, 
 is
invariant under translations and differentiation.

If f � 
 , then its transforms 	 � f � and �	 � f � are
(i) infinitely differentiable because f is rapidly decreasing;
(ii) rapidly decreasing because f is infinitely differentiable;

hence 	 � f � and �	 � f � are in 
 : 
 is invariant under 	 and �	 .
Since L1 � 
 and L2 � 
 , all properties of 	 and �	 already

encountered above are enjoyed by functions of 
 , with all
restrictions on differentiability and/or integrability lifted. For
instance, given two functions f and g in 
 , then both fg and f � g
are in 
 (which was not the case with L1 nor with L2) so that the
reciprocity theorem inherited from L2

	 � �	 � f �� � f and �	 �	 � f �� � f

allows one to state the reverse of the convolution theorem first
established in L1:

	 � fg� � 	 � f � � 	 �g�
�	 � fg� � �	 � f � � �	 �g��

1.3.2.4.4.2. Gaussian functions and Hermite functions
Gaussian functions are particularly important elements of 
 . In

dimension 1, a well known contour integration (Schwartz, 1965, p.
184) yields

	 �exp�
�x2����� � �	 �exp�
�x2����� � exp�
��2�,
which shows that the ‘standard Gaussian’ exp�
�x2� is invariant
under 	 and �	 . By a tensor product construction, it follows that the
same is true of the standard Gaussian

G�x� � exp�
��x�2�

in dimension n:

	 �G��� � � �	 �G���� � G����
In other words, G is an eigenfunction of 	 and �	 for eigenvalue 1
(Section 1.3.2.4.3.4).

A complete system of eigenfunctions may be constructed as
follows. In dimension 1, consider the family of functions

Hm � DmG2

G
�m � 0�,

where D denotes the differentiation operator. The first two members
of the family

H0 � G, H1 � 2DG,

are such that 	 �H0� � H0, as shown above, and

DG�x� � 
2�xG�x� � i�2�ix�G�x� � i	 �DG��x�,
hence

	 �H1� � �
i�H1�

We may thus take as an induction hypothesis that

	 �Hm� � �
i�mHm�

The identity

D
DmG2

G

� �
� Dm	1G2

G

 DG

G
DmG2

G

may be written

Hm	1�x� � �DHm��x� 
 2�xHm�x�,
and the two differentiation theorems give:

	 �DHm���� � �2�i��	 �Hm����
	 �
2�xHm���� � 
iD�	 �Hm������

Combination of this with the induction hypothesis yields

	 �Hm	1���� � �
i�m	1��DHm���� 
 2��Hm����
� �
i�m	1Hm	1���,

thus proving that Hm is an eigenfunction of 	 for eigenvalue �
i�m
for all m � 0. The same proof holds for �	 , with eigenvalue im. If
these eigenfunctions are normalized as

� m�x� � �
1�m21�4�����
m�

"
2m�m�2

Hm�x�,

then it can be shown that the collection of Hermite functions
�� m�x��m�0 constitutes an orthonormal basis of L2��� such that
� m is an eigenfunction of 	 (respectively �	 ) for eigenvalue �
i�m
(respectively im).

In dimension n, the same construction can be extended by tensor
product to yield the multivariate Hermite functions

� m�x� � � m1�x1� �� m2�x2� � � � ��� mn�xn�
(where m � 0 is a multi-index). These constitute an orthonormal
basis of L2��n�, with � m an eigenfunction of 	 (respectively �	 )
for eigenvalue �
i��m� (respectively i�m�). Thus the subspaces Hk
of Section 1.3.2.4.3.4 are spanned by those � m with
�m� � k mod 4 �k � 0, 1, 2, 3�.

General multivariate Gaussians are usually encountered in the
non-standard form

GA�x� � exp�
1
2x

T � Ax�,
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where A is a symmetric positive-definite matrix. Diagonalizing A as
E�ET with EET the identity matrix, and putting A1�2 � E�1�2ET ,
we may write

GA�x� � G
A
2�

� �1�2

x

� �

i.e.

GA � ��2�A
1�1�2��G;

hence (by Section 1.3.2.4.2.3)

	 �GA� � �det �2�A
1��1�2 A
2�

� �1�2
� ��

G,

i.e.

	 �GA��� � � �det �2�A
1��1�2G��2�A
1�1�2� �,
i.e. finally

	 �GA� � �det �2�A
1��1�2G4�2A
1 �

This result is widely used in crystallography, e.g. to calculate
form factors for anisotropic atoms (Section 1.3.4.2.2.6) and to
obtain transforms of derivatives of Gaussian atomic densities
(Section 1.3.4.4.7.10).

1.3.2.4.4.3. Heisenberg’s inequality, Hardy’s theorem
The result just obtained, which also holds for �	 , shows that the

‘peakier’ GA, the ‘broader’ 	 �GA�. This is a general property of the
Fourier transformation, expressed in dimension 1 by the Heisenberg
inequality (Weyl, 1931):�

x2� f �x��2 dx

� � �
�2�	 � f �����2 d�

� �

� 1
16�2

�
� f �x��2 dx

� �2

,

where, by a beautiful theorem of Hardy (1933), equality can only be
attained for f Gaussian. Hardy’s theorem is even stronger: if both f
and 	 � f � behave at infinity as constant multiples of G, then each of
them is everywhere a constant multiple of G; if both f and 	 � f �
behave at infinity as constant multiples of G�monomial, then each
of them is a finite linear combination of Hermite functions. Hardy’s
theorem is invoked in Section 1.3.4.4.5 to derive the optimal
procedure for spreading atoms on a sampling grid in order to obtain
the most accurate structure factors.

The search for optimal compromises between the confinement of
f to a compact domain in x-space and of 	 � f � to a compact domain
in �-space leads to consideration of prolate spheroidal wavefunc-
tions (Pollack & Slepian, 1961; Landau & Pollack, 1961, 1962).

1.3.2.4.4.4. Symmetry property
A final formal property of the Fourier transform, best established

in 
 , is its symmetry: if f and g are in 
 , then by Fubini’s theorem

�	 � f �, g� � �
�n

�
�n

f �x� exp�
2�i� � x� dnx

� 
g��� dn�

� �
�n

f �x� �
�n

g��� exp�
2�i� � x� dn�

� 
dnx

� �f ,	 �g���

This possibility of ‘transposing’ 	 (and �	 ) from the left to the
right of the duality bracket will be used in Section 1.3.2.5.4 to
extend the Fourier transformation to distributions.

1.3.2.4.5. Various writings of Fourier transforms

Other ways of writing Fourier transforms in �n exist besides the
one used here. All have the form

	 h� �� f ���� � 1
hn

�
�n

f �x� exp�
i�� � x� dnx,

where h is real positive and � real non-zero, with the reciprocity
formula written:

f �x� � 1
kn

�
�n

	 h� �� f ��� � exp�	i�� � x� dnx

with k real positive. The consistency condition between h, k and � is

hk � 2�
��� �

The usual choices are:

�i� � �  2�, h � k � 1 �as here�;
�ii� � �  1, h � 1, k � 2� �in probability theory

and in solid-state physics�;
�iii� � �  1, h � k �

������
2�

"
�in much of classical analysis��

It should be noted that conventions (ii) and (iii) introduce
numerical factors of 2� in convolution and Parseval formulae, while
(ii) breaks the symmetry between 	 and �	 .

1.3.2.4.6. Tables of Fourier transforms

The books by Campbell & Foster (1948), Erdélyi (1954), and
Magnus et al. (1966) contain extensive tables listing pairs of
functions and their Fourier transforms. Bracewell (1986) lists those
pairs particularly relevant to electrical engineering applications.

1.3.2.5. Fourier transforms of tempered distributions

1.3.2.5.1. Introduction

It was found in Section 1.3.2.4.2 that the usual space of test
functions � is not invariant under 	 and �	 . By contrast, the space

 of infinitely differentiable rapidly decreasing functions is
invariant under 	 and �	 , and furthermore transposition formulae
such as

�	 � f �, g� � � f ,	 �g��
hold for all f , g � 
 . It is precisely this type of transposition which
was used successfully in Sections 1.3.2.3.9.1 and 1.3.2.3.9.3 to
define the derivatives of distributions and their products with
smooth functions.

This suggests using 
 instead of � as a space of test functions �,
and defining the Fourier transform 	 �T � of a distribution T by

�	 �T �,�� � �T ,	 ����
whenever T is capable of being extended from � to 
 while
remaining continuous. It is this latter proviso which will be
subsumed under the adjective ‘tempered’. As was the case with
the construction of ��, it is the definition of a sufficiently strong
topology (i.e. notion of convergence) in 
 which will play a key
role in transferring to the elements of its topological dual 
 � (called
tempered distributions) all the properties of the Fourier transforma-
tion.
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Besides the general references to distribution theory mentioned
in Section 1.3.2.3.1 the reader may consult the books by Zemanian
(1965, 1968). Lavoine (1963) contains tables of Fourier transforms
of distributions.

1.3.2.5.2. 
 as a test-function space

A notion of convergence has to be introduced in 
 ��n� in order
to be able to define and test the continuity of linear functionals on it.

A sequence ��j� of functions in 
 will be said to converge to 0 if,
for any given multi-indices k and p, the sequence �xkDp�j� tends to
0 uniformly on �n.

It can be shown that ���n� is dense in 
 ��n�. Translation is
continuous for this topology. For any linear differential operator
P�D� ��

papDp and any polynomial Q�x� over �n, ��j� � 0
implies �Q�x� � P�D��j� � 0 in the topology of 
 . Therefore,
differentiation and multiplication by polynomials are continuous for
the topology on 
 .

The Fourier transformations 	 and �	 are also continuous for the
topology of 
 . Indeed, let ��j� converge to 0 for the topology on 
 .
Then, by Section 1.3.2.4.2,

��2�� �mDp�	 ��j��� � �Dm��2�x�p�j��1�

The right-hand side tends to 0 as j � by definition of
convergence in 
 , hence ���mDp�	 ��j�� � 0 uniformly, so that
�	 ��j�� � 0 in 
 as j �. The same proof applies to �	 .

1.3.2.5.3. Definition and examples of tempered
distributions

A distribution T � ����n� is said to be tempered if it can be
extended into a continuous linear functional on 
 .

If 
 ���n� is the topological dual of 
 ��n�, and if S � 
 ���n�,
then its restriction to � is a tempered distribution; conversely, if
T � �� is tempered, then its extension to 
 is unique (because � is
dense in 
 ), hence it defines an element S of 
 �. We may therefore
identify 
 � and the space of tempered distributions.

A distribution with compact support is tempered, i.e. 
 � � � �. By
transposition of the corresponding properties of 
 , it is readily
established that the derivative, translate or product by a polynomial
of a tempered distribution is still a tempered distribution.

These inclusion relations may be summarized as follows: since 

contains � but is contained in � , the reverse inclusions hold for the
topological duals, and hence 
 � contains � � but is contained in ��.

A locally summable function f on �n will be said to be of
polynomial growth if � f �x�� can be majorized by a polynomial in
�x� as �x� � . It is easily shown that such a function f defines a
tempered distribution Tf via

�Tf ,�� � �
�n

f �x���x� dnx�

In particular, polynomials over �n define tempered distributions,
and so do functions in 
 . The latter remark, together with the
transposition identity (Section 1.3.2.4.4), invites the extension of 	
and �	 from 
 to 
 �.

1.3.2.5.4. Fourier transforms of tempered distributions

The Fourier transform 	 �T � and cotransform �	 �T � of a tempered
distribution T are defined by

�	 �T �,�� � �T ,	 ����
� �	 �T �,�� � �T , �	 ����

for all test functions � � 
 . Both 	 �T � and �	 �T � are themselves
tempered distributions, since the maps � �
� 	 ��� and � �
� �	 ���

are both linear and continuous for the topology of 
 . In the same
way that x and � have been used consistently as arguments for � and
	 ���, respectively, the notation Tx and 	 �T �� will be used to
indicate which variables are involved.

When T is a distribution with compact support, its Fourier
transform may be written

	 �Tx�� � �Tx, exp�
2�i� � x��
since the function x �
� exp�
2�i� � x� is in � while Tx � � �. It
can be shown, as in Section 1.3.2.4.2, to be analytically continuable
into an entire function over �n.

1.3.2.5.5. Transposition of basic properties

The duality between differentiation and multiplication by a
monomial extends from 
 to 
 � by transposition:

	 �Dp
xTx�� � �2�i��p	 �Tx��

Dp
� �	 �Tx�� � � 	 ��
2�ix�pTx�� �

Analogous formulae hold for �	 , with i replaced by 
i.
The formulae expressing the duality between translation and

phase shift, e.g.

	 ��aTx�� � exp�
2�ia � ��	 �Tx��
���	 �Tx�� � � 	 �exp�2�i� � x�Tx�� ;

between a linear change of variable and its contragredient, e.g.

	 �A�T � � �det A���A
1�T ��	 �T �;
are obtained similarly by transposition from the corresponding
identities in 
 . They give a transposition formula for an affine
change of variables x �
� S�x� � Ax	 b with non-singular matrix
A:

	 �S�T � � exp�
2�i� � b�	 �A�T �
� exp�
2�i� � b��det A���A
1�T ��	 �T �,

with a similar result for �	 , replacing 
i by +i.
Conjugate symmetry is obtained similarly:

	 ��T � � �	 �T �,	 ���T � � 	 �T �,
with the same identities for �	 .

The tensor product property also transposes to tempered
distributions: if U � 
 ���m�, V � 
 ���n�,

	 �Ux � Vy� � 	 �U �� � 	 �V ��
�	 �Ux � Vy� � �	 �U �� � �	 �V �� �

1.3.2.5.6. Transforms of �-functions

Since � has compact support,

	 ��x�� � ��x, exp�
2�i� � x�� � 1� , i�e� 	 ��� � 1�

It is instructive to show that conversely 	 �1� � � without invoking
the reciprocity theorem. Since 	j1 � 0 for all j � 1, � � � , n, it
follows from Section 1.3.2.3.9.4 that 	 �1� � c�; the constant c can
be determined by using the invariance of the standard Gaussian G
established in Section 1.3.2.4.3:

�	 �1�x, Gx� � �1� , G� � � 1;

hence c � 1. Thus, 	 �1� � �.
The basic properties above then read (using multi-indices to

denote differentiation):

39

1.3. FOURIER TRANSFORMS IN CRYSTALLOGRAPHY



	 ���m�x �� � �2�i��m, 	 �xm�� � �
2�i�
�m���m�� ;

	 ��a�� � exp�
2�ia � ��, 	 �exp�2�i� � x��� � �� ,

with analogous relations for �	 , i becoming 
i. Thus derivatives of
� are mapped to monomials (and vice versa), while translates of �
are mapped to ‘phase factors’ (and vice versa).

1.3.2.5.7. Reciprocity theorem

The previous results now allow a self-contained and rigorous
proof of the reciprocity theorem between 	 and �	 to be given,
whereas in traditional settings (i.e. in L1 and L2) the implicit
handling of � through a limiting process is always the sticking point.

Reciprocity is first established in 
 as follows:
�	 �	 �����x� � �

�n

	 ����� � exp�2�i� � x� dn�

� �
�n

	 ��
x���� � dn�

� �1,	 ��
x���
� �	 �1�, �
x��
� ��x�,��
� ��x�

and similarly

	 � �	 �����x� � ��x��
The reciprocity theorem is then proved in 
 � by transposition:

�	 �	 �T �� � 	 � �	 �T �� � T for all T � 
 ��

Thus the Fourier cotransformation �	 in 
 � may legitimately be
called the ‘inverse Fourier transformation’.

The method of Section 1.3.2.4.3 may then be used to show that 	
and �	 both have period 4 in 
 �.

1.3.2.5.8. Multiplication and convolution

Multiplier functions ��x� for tempered distributions must be
infinitely differentiable, as for ordinary distributions; furthermore,
they must grow sufficiently slowly as �x� �  to ensure that �� �

 for all � � 
 and that the map � �
� �� is continuous for the
topology of 
 . This leads to choosing for multipliers the subspace
�M consisting of functions � � � of polynomial growth. It can be
shown that if f is in �M , then the associated distribution Tf is in 
 �
(i.e. is a tempered distribution); and that conversely if T is in 
 �,� �
T is in �M for all � � �.

Corresponding restrictions must be imposed to define the space
� �C of those distributions T whose convolution S � T with a
tempered distribution S is still a tempered distribution: T must be
such that, for all � � 
 , ��x� � �Ty,��x	 y�� is in 
 ; and such
that the map � �
� � be continuous for the topology of 
 . This
implies that S is ‘rapidly decreasing’. It can be shown that if f is in

 , then the associated distribution Tf is in � �C; and that conversely if
T is in � �C ,� � T is in 
 for all � � �.

The two spaces �M and � �C are mapped into each other by the
Fourier transformation

	 ��M � � �	 ��M � � � �C
	 �� �C� � �	 �� �C� � �M

and the convolution theorem takes the form

	 ��S� � 	 ��� � 	 �S� S � 
 �,� � �M ,	 ��� � � �C;

	 �S � T � � 	 �S� � 	 �T � S � 
 �, T � � �C ,	 �T � � �M �

The same identities hold for �	 . Taken together with the reciprocity
theorem, these show that 	 and �	 establish mutually inverse
isomorphisms between �M and � �C , and exchange multiplication for
convolution in 
 �.

It may be noticed that most of the basic properties of 	 and �	
may be deduced from this theorem and from the properties of �.
Differentiation operators Dm and translation operators �a are
convolutions with Dm� and �a�; they are turned, respectively, into
multiplication by monomials � 2�i��m (the transforms of Dm�) or
by phase factors exp� 2�i� � �� (the transforms of �a�).

Another consequence of the convolution theorem is the duality
established by the Fourier transformation between sections and
projections of a function and its transform. For instance, in �3, the
projection of f �x, y, z� on the x, y plane along the z axis may be
written

��x � �y � 1z� � f ;

its Fourier transform is then

�1� � 1� � ��� � 	 � f �,
which is the section of 	 � f � by the plane � � 0, orthogonal to the z
axis used for projection. There are numerous applications of this
property in crystallography (Section 1.3.4.2.1.8) and in fibre
diffraction (Section 1.3.4.5.1.3).

1.3.2.5.9. L2 aspects, Sobolev spaces

The special properties of 	 in the space of square-integrable
functions L2��n�, such as Parseval’s identity, can be accommodated
within distribution theory: if u � L2��n�, then Tu is a tempered
distribution in 
 � (the map u �
� Tu being continuous) and it can be
shown that S � 	 �Tu� is of the form Sv, where u � 	 �u� is the
Fourier transform of u in L2��n�. By Plancherel’s theorem,
�u�2 � �v�2.

This embedding of L2 into 
 � can be used to derive the
convolution theorem for L2. If u and v are in L2��n�, then u � v
can be shown to be a bounded continuous function; thus u � v is not
in L2, but it is in 
 �, so that its Fourier transform is a distribution,
and

	 �u � v� � 	 �u� � 	 �v��
Spaces of tempered distributions related to L2��n� can be defined

as follows. For any real s, define the Sobolev space Hs��n� to
consist of all tempered distributions S � 
 ���n� such that

�1	 �� �2�s�2	 �S�� � L2��n��
These spaces play a fundamental role in the theory of partial

differential equations, and in the mathematical theory of tomo-
graphic reconstruction – a subject not unrelated to the crystal-
lographic phase problem (Natterer, 1986).

1.3.2.6. Periodic distributions and Fourier series

1.3.2.6.1. Terminology

Let �n be the subset of �n consisting of those points with
(signed) integer coordinates; it is an n-dimensional lattice, i.e. a free
Abelian group on n generators. A particularly simple set of n
generators is given by the standard basis of �n, and hence �n will be
called the standard lattice in �n. Any other ‘non-standard’ n-
dimensional lattice 
 in �n is the image of this standard lattice by a
general linear transformation.

If we identify any two points in �n whose coordinates are
congruent modulo �n, i.e. differ by a vector in �n, we obtain the
standard n-torus �n��n. The latter may be viewed as �����n, i.e. as
the Cartesian product of n circles. The same identification may be
carried out modulo a non-standard lattice 
, yielding a non-
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standard n-torus �n�
. The correspondence to crystallographic
terminology is that ‘standard’ coordinates over the standard 3-torus
�3��3 are called ‘fractional’ coordinates over the unit cell; while
Cartesian coordinates, e.g. in ångströms, constitute a set of non-
standard coordinates.

Finally, we will denote by I the unit cube �0, 1�n and by C� the
subset

C� � �x � �n�xj� � � for all j � 1, � � � , n��

1.3.2.6.2. �n-periodic distributions in �n

A distribution T � ����n� is called periodic with period lattice
�n (or �n-periodic) if �mT � T for all m � �n (in crystallography
the period lattice is the direct lattice).

Given a distribution with compact support T0 � � ���n�, then
T ��

m��n�mT0 is a �n-periodic distribution. Note that we may
write T � r � T0, where r ��

m��n��m� consists of Dirac �’s at all
nodes of the period lattice �n.

Conversely, any �n-periodic distribution T may be written as
r � T0 for some T0 � � �. To retrieve such a ‘motif’ T0 from T, a
function � will be constructed in such a way that � � � (hence has
compact support) and r � � � 1; then T0 � �T . Indicator functions
(Section 1.3.2.2) such as �1 or �C1�2

cannot be used directly, since
they are discontinuous; but regularized versions of them may be
constructed by convolution (see Section 1.3.2.3.9.7) as
�0 � �C�

� ��, with � and � such that �0�x� � 1 on C1�2 and
�0�x� � 0 outside C3�4. Then the function

� � �0�
m��n�m�0

has the desired property. The sum in the denominator contains at
most 2n non-zero terms at any given point x and acts as a smoothly
varying ‘multiplicity correction’.

1.3.2.6.3. Identification with distributions over �n��n

Throughout this section, ‘periodic’ will mean ‘�n-periodic’.
Let s � �, and let [s] denote the largest integer � s. For

x � �x1, � � � , xn� � �n, let �x be the unique vector ��x1, � � � ,�xn�
with �xj � xj 
 �xj�. If x, y � �n, then �x � �y if and only if
x
 y � �n. The image of the map x �
� �x is thus �n modulo �n,
or �n��n.

If f is a periodic function over �n, then �x � �y implies
f �x� � f �y�; we may thus define a function �f over �n��n by
putting �f ��x� � f �x� for any x � �n such that x
 �x � �n.
Conversely, if �f is a function over �n��n, then we may define a
function f over �n by putting f �x� � �f ��x�, and f will be periodic.
Periodic functions over �n may thus be identified with functions
over �n��n, and this identification preserves the notions of
convergence, local summability and differentiability.

Given �0 � ���n�, we may define

��x� � �
m��n

��m�
0��x�

since the sum only contains finitely many non-zero terms; � is
periodic, and �� � ���n��n�. Conversely, if �� � ���n��n� we
may define � � ���n� periodic by ��x� � ����x�, and �0 � ���n�
by putting �0 � �� with � constructed as above.

By transposition, a distribution �T � ����n��n� defines a unique
periodic distribution T � ����n� by �T ,�0� � ��T , ���; conversely,
T � ����n� periodic defines uniquely �T � ����n��n� by
��T , ��� � �T ,�0�.

We may therefore identify �n-periodic distributions over �n with
distributions over �n��n. We will, however, use mostly the former

presentation, as it is more closely related to the crystallographer’s
perception of periodicity (see Section 1.3.4.1).

1.3.2.6.4. Fourier transforms of periodic distributions

The content of this section is perhaps the central result in the
relation between Fourier theory and crystallography (Section
1.3.4.2.1.1).

Let T � r � T0 with r defined as in Section 1.3.2.6.2. Then
r � 
 �, T0 � � � hence T0 � � �C , so that T � 
 �: �n-periodic
distributions are tempered, hence have a Fourier transform. The
convolution theorem (Section 1.3.2.5.8) is applicable, giving:

	 �T � � 	 �r� � 	 �T0�
and similarly for �	 .

Since 	 ���m����� � exp�
2�i� �m�, formally

	 �r�� �
�

m��n
exp�
2�i� �m� � Q,

say.
It is readily shown that Q is tempered and periodic, so that

Q ��
���n����Q�, while the periodicity of r implies that

�exp�
2�i�j� 
 1��Q � 0, j � 1, � � � , n�

Since the first factors have single isolated zeros at �j � 0 in C3�4,
�Q � c� (see Section 1.3.2.3.9.4) and hence by periodicity Q � cr;
convoluting with �C1 shows that c � 1. Thus we have the
fundamental result:

	 �r� � r

so that

	 �T � � r � 	 �T0�;
i.e., according to Section 1.3.2.3.9.3,

	 �T �� �
�
���n

	 �T0���� � �����

The right-hand side is a weighted lattice distribution, whose
nodes � � �n are weighted by the sample values 	 �T0���� of the
transform of the motif T0 at those nodes. Since T0 � � �, the latter
values may be written

	 �T0���� � �T0
x , exp�
2�i� � x���

By the structure theorem for distributions with compact support
(Section 1.3.2.3.9.7), T0 is a derivative of finite order of a
continuous function; therefore, from Section 1.3.2.4.2.8 and Section
1.3.2.5.8, 	 �T0���� grows at most polynomially as ��� �  (see
also Section 1.3.2.6.10.3 about this property). Conversely, let W ��

���n w����� be a weighted lattice distribution such that the
weights w� grow at most polynomially as ��� � . Then W is a
tempered distribution, whose Fourier cotransform Tx ��

���n w� exp�	2�i� � x� is periodic. If T is now written as r �
T0 for some T0 � � �, then by the reciprocity theorem

w� � 	 �T0���� � �T0
x , exp�
2�i� � x���

Although the choice of T0 is not unique, and need not yield back the
same motif as may have been used to build T initially, different
choices of T0 will lead to the same coefficients w� because of the
periodicity of exp�
2�i� � x�.

The Fourier transformation thus establishes a duality between
periodic distributions and weighted lattice distributions. The pair of
relations

41

1.3. FOURIER TRANSFORMS IN CRYSTALLOGRAPHY



�i� w� � �T0
x , exp�
2�i� � x��

�ii� Tx �
�
���n

w� exp�	2�i� � x�

are referred to as the Fourier analysis and the Fourier synthesis of
T, respectively (there is a discrepancy between this terminology and
the crystallographic one, see Section 1.3.4.2.1.1). In other words,
any periodic distribution T � 
 � may be represented by a Fourier
series (ii), whose coefficients are calculated by (i). The convergence
of (ii) towards T in 
 � will be investigated later (Section 1.3.2.6.10).

1.3.2.6.5. The case of non-standard period lattices

Let 
 denote the non-standard lattice consisting of all vectors of
the form

�
j�1mjaj, where the mj are rational integers and a1, � � � , an

are n linearly independent vectors in �n. Let R be the corresponding
lattice distribution: R ��

x�
��x�.
Let A be the non-singular n� n matrix whose successive

columns are the coordinates of vectors a1, � � � , an in the standard
basis of �n; A will be called the period matrix of 
, and the
mapping x �
� Ax will be denoted by A. According to Section
1.3.2.3.9.5 we have

�R,�� � �
m��n

��Am� � �r, �A
1���� � �det A�
1�A�r,��

for any � � 
 , and hence R � �det A�
1A�r. By Fourier
transformation, according to Section 1.3.2.5.5,

	 �R� � �det A�
1	 �A�r� � ��A
1�T ��	 �r� � ��A
1�T ��r,

which we write:

	 �R� � �det A�
1R�

with

R� � �det A���A
1�T ��r�

R� is a lattice distribution:

R� � �
���n

���A
1�T�� �
�
��
�

����

associated with the reciprocal lattice 
� whose basis vectors
a�1, � � � , a�n are the columns of �A
1�T . Since the latter matrix is
equal to the adjoint matrix (i.e. the matrix of co-factors) of A
divided by det A, the components of the reciprocal basis vectors can
be written down explicitly (see Section 1.3.4.2.1.1 for the
crystallographic case n � 3).

A distribution T will be called 
-periodic if ��T � T for all
� � 
; as previously, T may be written R � T0 for some motif
distribution T0 with compact support. By Fourier transformation,

	 �T � � �det A�
1R� � 	 �T0�
� �det A�
1 �

��
�
	 �T0������� �

� �det A�
1 �
���n

	 �T0���A
1�T�����A
1�T��

so that 	 �T � is a weighted reciprocal-lattice distribution, the weight
attached to node � � 
� being �det A�
1 times the value 	 �T0��� �
of the Fourier transform of the motif T0.

This result may be further simplified if T and its motif T0 are
referred to the standard period lattice �n by defining t and t0 so that
T � A�t, T0 � A�t0, t � r � t0. Then

	 �T0��� � � �det A�	 �t0��AT��,
hence

	 �T0���A
1�T�� � �det A�	 �t0����,
so that

	 �T � � �
���n

	 �t0�������A
1�T��

in non-standard coordinates, while

	 �t� � �
���n

	 �t0��������

in standard coordinates.
The reciprocity theorem may then be written:

�iii� W� � �det A�
1�T0
x , exp�
2�i� � x��, � � ��

�iv� Tx �
�
��
�

W� exp�	2�i� � x�

in non-standard coordinates, or equivalently:

�v� w� � �t0
x, exp�
2�i� � x��, � � �n

�vi� tx �
�
���n

w� exp�	2�i� � x�

in standard coordinates. It gives an n-dimensional Fourier series
representation for any periodic distribution over �n. The con-
vergence of such series in 
 ���n� will be examined in Section
1.3.2.6.10.

1.3.2.6.6. Duality between periodization and sampling

Let T0 be a distribution with compact support (the ‘motif’). Its
Fourier transform �	 �T0� is analytic (Section 1.3.2.5.4) and may thus
be used as a multiplier.

We may rephrase the preceding results as follows:
(i) if T0 is ‘periodized by R’ to give R � T0, then �	 �T0� is

‘sampled by R�’ to give �det A�
1R� � �	 �T0�;
(ii) if �	 �T0� is ‘sampled by R�’ to give R� � �	 �T0�, then T0 is

‘periodized by R’ to give �det A�R � T0.
Thus the Fourier transformation establishes a duality between the

periodization of a distribution by a period lattice 
 and the sampling
of its transform at the nodes of lattice 
� reciprocal to 
. This is a
particular instance of the convolution theorem of Section 1.3.2.5.8.

At this point it is traditional to break the symmetry between 	
and �	 which distribution theory has enabled us to preserve even in
the presence of periodicity, and to perform two distinct identifica-
tions:

(i) a 
-periodic distribution T will be handled as a distribution �T
on �n�
, was done in Section 1.3.2.6.3;

(ii) a weighted lattice distribution W ��
���n W����A
1�T�� will

be identified with the collection �W��� � �n� of its n-tuply
indexed coefficients.

1.3.2.6.7. The Poisson summation formula

Let � � 
 , so that 	 ��� � 
 . Let R be the lattice distribution
associated to lattice 
, with period matrix A, and let R� be
associated to the reciprocal lattice 
�. Then we may write:

�R,�� � �R, �	 �	 �����
� � �	 �R�,	 ����
� �det A�
1�R�,	 ����

i.e.
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�
x�


��x� � �det A�
1 �
��
�

	 ����� ��

This identity, which also holds for �	 , is called the Poisson
summation formula. Its usefulness follows from the fact that the
speed of decrease at infinity of � and 	 ��� are inversely related
(Section 1.3.2.4.4.3), so that if one of the series (say, the left-hand
side) is slowly convergent, the other (say, the right-hand side) will
be rapidly convergent. This procedure has been used by Ewald
(1921) [see also Bertaut (1952), Born & Huang (1954)] to evaluate
lattice sums (Madelung constants) involved in the calculation of the
internal electrostatic energy of crystals (see Chapter 3.4 in this
volume on convergence acceleration techniques for crystallo-
graphic lattice sums).

When � is a multivariate Gaussian

��x� � GB�x� � exp�
1
2x

T Bx�,
then

	 ����� � � �det �2�B
1��1�2GB
1�� �,
and Poisson’s summation formula for a lattice with period matrix A
reads: �

m��n
GB�Am� � �det A�
1�det �2�B
1��1�2

� �
���n

G4�2B
1 ��A
1�T��

or equivalently�
m��n

GC�m� � �det �2�C
1��1�2 �
���n

G4�2 C
1���

with C � AT BA�

1.3.2.6.8. Convolution of Fourier series

Let S � R � S0 and T � R � T0 be two 
-periodic distributions,
the motifs S0 and T0 having compact support. The convolution S �
T does not exist, because S and T do not satisfy the support
condition (Section 1.3.2.3.9.7). However, the three distributions R,
S0 and T0 do satisfy the generalized support condition, so that their
convolution is defined; then, by associativity and commutativity:

R � S0 � T0 � S � T0 � S0 � T �

By Fourier transformation and by the convolution theorem:

R� � 	 �S0 � T0� � �R� � 	 �S0�� � 	 �T0�
� 	 �T0� � �R� � 	 �S0���

Let �U����
� , �V����
� and �W����
� be the sets of Fourier
coefficients associated to S, T and S � T0�� S0 � T�, respectively.
Identifying the coefficients of �� for � � 
� yields the forward
version of the convolution theorem for Fourier series:

W� � �det A�U�V� �

The backward version of the theorem requires that T be infinitely
differentiable. The distribution S � T is then well defined and its
Fourier coefficients �Q����
� are given by

Q� �
�
��
�

U�V�
��

1.3.2.6.9. Toeplitz forms, Szegö’s theorem

Toeplitz forms were first investigated by Toeplitz (1907, 1910,
1911a). They occur in connection with the ‘trigonometric moment
problem’ (Shohat & Tamarkin, 1943; Akhiezer, 1965) and

probability theory (Grenander, 1952) and play an important role
in several direct approaches to the crystallographic phase problem
[see Sections 1.3.4.2.1.10, 1.3.4.5.2.2(e)]. Many aspects of their
theory and applications are presented in the book by Grenander &
Szegö (1958).

1.3.2.6.9.1. Toeplitz forms
Let f � L1����� be real-valued, so that its Fourier coefficients

satisfy the relations c
m� f � � cm� f �. The Hermitian form in n	 1
complex variables

Tn� f ��u� � �n
��0

�n

�0

u�c�

u


is called the nth Toeplitz form associated to f. It is a straightforward
consequence of the convolution theorem and of Parseval’s identity
that Tn� f � may be written:

Tn� f ��u� � �1
0

�n

�0

u
 exp�2�i
x�
����

����
2

f �x� dx�

1.3.2.6.9.2. The Toeplitz–Carathéodory–Herglotz theorem
It was shown independently by Toeplitz (1911b), Carathéodory

(1911) and Herglotz (1911) that a function f � L1 is almost
everywhere non-negative if and only if the Toeplitz forms Tn� f �
associated to f are positive semidefinite for all values of n.

This is equivalent to the infinite system of determinantal
inequalities

Dn � det

c0 c
1 � � c
n

c1 c0 c
1 � �
� c1 � � �
� � � � c
1

cn � � c1 c0

�
�����

�
				
 � 0 for all n�

The Dn are called Toeplitz determinants. Their application to the
crystallographic phase problem is described in Section 1.3.4.2.1.10.

1.3.2.6.9.3. Asymptotic distribution of eigenvalues of
Toeplitz forms

The eigenvalues of the Hermitian form Tn� f � are defined as the
n	 1 real roots of the characteristic equation det �Tn� f 
 ��� � 0.
They will be denoted by

�
�n�
1 ,��n�2 , � � � ,��n�n	1�

It is easily shown that if m � f �x� � M for all x, then m �
��n�
 � M for all n and all 
 � 1, � � � , n	 1. As n � these
bounds, and the distribution of the ��n� within these bounds, can be
made more precise by introducing two new notions.

(i) Essential bounds: define ess inf f as the largest m such that
f �x� � m except for values of x forming a set of measure 0; and
define ess sup f similarly.

(ii) Equal distribution. For each n, consider two sets of n	 1
real numbers:

a�n�1 , a�n�2 , � � � , a�n�n	1, and b�n�1 , b�n�2 , � � � , b�n�n	1�

Assume that for each 
 and each n, �a�n�
 � � K and �b�n�
 � � K with
K independent of 
 and n. The sets �a�n�
 � and �b�n�
 � are said to be
equally distributed in �
K, 	 K� if, for any function F over
�
K, 	 K�,

lim
n�

1
n	 1

�n	1


�1

�F�a�n�
 � 
 F�b�n�
 �� � 0�
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We may now state an important theorem of Szegö (1915, 1920).
Let f � L1, and put m � ess inf f , M � ess sup f. If m and M are
finite, then for any continuous function F��� defined in the interval
[m, M] we have

lim
n�

1
n	 1

�n	1


�1

F���n�
 � �
�1

0

F� f �x�� dx�

In other words, the eigenvalues ��n�
 of the Tn and the values
f �
��n	 2�� of f on a regular subdivision of ]0, 1[ are equally
distributed.

Further investigations into the spectra of Toeplitz matrices may
be found in papers by Hartman & Wintner (1950, 1954), Kac et al.
(1953), Widom (1965), and in the notes by Hirschman & Hughes
(1977).

1.3.2.6.9.4. Consequences of Szegö’s theorem
(i) If the �’s are ordered in ascending order, then

lim
n��

�n�
1 � m � ess inf f , lim

n��
�n�
n	1 � M � ess sup f �

Thus, when f � 0, the condition number ��n�n	1��
�n�
1 of Tn� f � tends

towards the ‘essential dynamic range’ M�m of f.
(ii) Let F��� � �s where s is a positive integer. Then

lim
n�

1
n	 1

�n	1


�1

���n�
 �s �
�1

0

� f �x��s dx�

(iii) Let m  0, so that ��n�
  0, and let Dn� f � � det Tn� f �.
Then

Dn� f � � �n	1


�1
��n�
 ,

hence

log Dn� f � � �n	1


�1
log��n�
 �

Putting F��� � log �, it follows that

lim
n��Dn� f ��1��n	1� � exp

�1
0

log f �x� dx

� �
�

Further terms in this limit were obtained by Szegö (1952) and
interpreted in probabilistic terms by Kac (1954).

1.3.2.6.10. Convergence of Fourier series

The investigation of the convergence of Fourier series and of
more general trigonometric series has been the subject of intense
study for over 150 years [see e.g. Zygmund (1976)]. It has been a
constant source of new mathematical ideas and theories, being
directly responsible for the birth of such fields as set theory,
topology and functional analysis.

This section will briefly survey those aspects of the classical
results in dimension 1 which are relevant to the practical use of
Fourier series in crystallography. The books by Zygmund (1959),
Tolstov (1962) and Katznelson (1968) are standard references in the
field, and Dym & McKean (1972) is recommended as a stimulant.

1.3.2.6.10.1. Classical L1 theory
The space L1����� consists of (equivalence classes of) complex-

valued functions f on the circle which are summable, i.e. for which

� f �1 �
�1
0
� f �x�� dx � 	�

It is a convolution algebra: If f and g are in L1, then f � g is in L1.
The mth Fourier coefficient cm� f � of f,

cm� f � � �1
0

f �x� exp�
2�imx� dx

is bounded: �cm� f �� � � f �1, and by the Riemann–Lebesgue lemma
cm� f � � 0 as m �. By the convolution theorem,
cm� f � g� � cm� f �cm�g�.

The pth partial sum Sp� f � of the Fourier series of f,

Sp� f ��x� � �
�m��p

cm� f � exp�2�imx�,

may be written, by virtue of the convolution theorem, as
Sp� f � � Dp � f , where

Dp�x� �
�
�m��p

exp�2�imx� � sin��2p	 1��x�
sin�x

is the Dirichlet kernel. Because Dp comprises numerous slowly
decaying oscillations, both positive and negative, Sp� f � may not
converge towards f in a strong sense as p �. Indeed, spectacular
pathologies are known to exist where the partial sums, examined
pointwise, diverge everywhere (Zygmund, 1959, Chapter VIII).
When f is piecewise continuous, but presents isolated jumps,
convergence near these jumps is marred by the Gibbs phenomenon:
Sp� f � always ‘overshoots the mark’ by about 9%, the area under the
spurious peak tending to 0 as p � but not its height [see Larmor
(1934) for the history of this phenomenon].

By contrast, the arithmetic mean of the partial sums, also called
the pth Cesàro sum,

Cp� f � � 1
p	 1

�S0� f � 	 � � �	 Sp� f ��,

converges to f in the sense of the L1 norm: �Cp� f � 
 f �1 � 0 as
p �. If furthermore f is continuous, then the convergence is
uniform, i.e. the error is bounded everywhere by a quantity which
goes to 0 as p �. It may be shown that

Cp� f � � Fp � f ,

where

Fp�x� �
�
�m��p

1
 �m�
p	 1

� �
exp�2�imx�

� 1
p	 1

sin�p	 1��x
sin�x

� �2

is the Fejér kernel. Fp has over Dp the advantage of being
everywhere positive, so that the Cesàro sums Cp� f � of a positive
function f are always positive.

The de la Vallée Poussin kernel

Vp�x� � 2F2p	1�x� 
 Fp�x�
has a trapezoidal distribution of coefficients and is such that
cm�Vp� � 1 if �m� � p	 1; therefore Vp � f is a trigonometric
polynomial with the same Fourier coefficients as f over that range of
values of m.
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The Poisson kernel

Pr�x� � 1	 2
�
m�1

rm cos 2�mx

� 1
 r2

1
 2r cos 2�mx	 r2

with 0 � r � 1 gives rise to an Abel summation procedure
[Tolstov (1962, p. 162); Whittaker & Watson (1927, p. 57)] since

�Pr � f ��x� � �
m��

cm� f �r�m� exp�2�imx��

Compared with the other kernels, Pr has the disadvantage of not
being a trigonometric polynomial; however, Pr is the real part of the
Cauchy kernel (Cartan, 1961; Ahlfors, 1966):

Pr�x� � ��
1	 r exp�2�ix�
1
 r exp�2�ix�
� �

and hence provides a link between trigonometric series and analytic
functions of a complex variable.

Other methods of summation involve forming a moving average
of f by convolution with other sequences of functions �p�x� besides
Dp of Fp which ‘tend towards �’ as p �. The convolution is
performed by multiplying the Fourier coefficients of f by those of
�p, so that one forms the quantities

S�p� f ��x� � �
�m��p

cm��p�cm� f � exp�2�imx��

For instance the ‘sigma factors’ of Lanczos (Lanczos, 1966, p. 65),
defined by

�m � sin�m��p�
m��p

,

lead to a summation procedure whose behaviour is intermediate
between those using the Dirichlet and the Fejér kernels; it
corresponds to forming a moving average of f by convolution with

�p � p��
1��2p�� 1��2p���Dp,

which is itself the convolution of a ‘rectangular pulse’ of width 1�p
and of the Dirichlet kernel of order p.

A review of the summation problem in crystallography is given
in Section 1.3.4.2.1.3.

1.3.2.6.10.2. Classical L2 theory
The space L2����� of (equivalence classes of) square-integrable

complex-valued functions f on the circle is contained in L1�����,
since by the Cauchy–Schwarz inequality

� f �2
1 �

�1
0
� f �x�� � 1 dx

� 2

� �1
0
� f �x��2 dx

�  �1
0

12 dx

� 
� � f �2

2 � �

Thus all the results derived for L1 hold for L2, a great simplification
over the situation in � or �n where neither L1 nor L2 was contained
in the other.

However, more can be proved in L2, because L2 is a Hilbert space
(Section 1.3.2.2.4) for the inner product

� f , g� � �1
0

f �x�g�x� dx,

and because the family of functions �exp�2�imx��m�� constitutes
an orthonormal Hilbert basis for L2.

The sequence of Fourier coefficients cm� f � of f � L2 belongs to
the space �2��� of square-summable sequences:�

m��
�cm� f ��2 � �

Conversely, every element c � �cm� of �2 is the sequence of Fourier
coefficients of a unique function in L2. The inner product

�c, d� � �
m��

cmdm

makes �2 into a Hilbert space, and the map from L2 to �2 established
by the Fourier transformation is an isometry (Parseval/Plancherel):

� f �L2 � �c� f ���2

or equivalently:

� f , g� � �c� f �, c�g���
This is a useful property in applications, since ( f , g) may be
calculated either from f and g themselves, or from their Fourier
coefficients c� f � and c�g� (see Section 1.3.4.4.6) for crystallo-
graphic applications).

By virtue of the orthogonality of the basis �exp�2�imx��m��, the
partial sum Sp� f � is the best mean-square fit to f in the linear
subspace of L2 spanned by �exp�2�imx���m��p, and hence (Bessel’s
inequality)�

�m��p
�cm� f ��2 � � f �2

2 

�
�M ��p

�cM � f ��2 � � f �2
2�

1.3.2.6.10.3. The viewpoint of distribution theory
The use of distributions enlarges considerably the range of

behaviour which can be accommodated in a Fourier series, even in
the case of general dimension n where classical theories meet with
even more difficulties than in dimension 1.

Let �wm�m�� be a sequence of complex numbers with �wm�
growing at most polynomially as �m� � , say �wm� � C�m�K .
Then the sequence �wm��2�im�K	2�m�� is in �2 and even defines a
continuous function f � L2����� and an associated tempered
distribution Tf � �������. Differentiation of Tf �K 	 2� times
then yields a tempered distribution whose Fourier transform leads to
the original sequence of coefficients. Conversely, by the structure
theorem for distributions with compact support (Section
1.3.2.3.9.7), the motif T0 of a �-periodic distribution is a derivative
of finite order of a continuous function; hence its Fourier
coefficients will grow at most polynomially with �m� as �m� � .

Thus distribution theory allows the manipulation of Fourier
series whose coefficients exhibit polynomial growth as their order
goes to infinity, while those derived from functions had to tend to 0
by virtue of the Riemann–Lebesgue lemma. The distribution-
theoretic approach to Fourier series holds even in the case of general
dimension n, where classical theories meet with even more
difficulties (see Ash, 1976) than in dimension 1.

1.3.2.7. The discrete Fourier transformation

1.3.2.7.1. Shannon’s sampling theorem and interpolation
formula

Let � � ���n� be such that  � 	 ��� has compact support K.
Let � be sampled at the nodes of a lattice 
�, yielding the lattice
distribution R� � �. The Fourier transform of this sampled version
of � is

	 �R� � �� � �det A��R � �,
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which is essentially  periodized by period lattice 
 � �
���, with
period matrix A.

Let us assume that 
 is such that the translates of K by different
period vectors of 
 are disjoint. Then we may recover  from R � 
by masking the contents of a ‘unit cell’ � of 
 (i.e. a fundamental
domain for the action of 
 in �n) whose boundary does not meet K.
If �� is the indicator function of � , then

 � �� � �R � ��
Transforming both sides by �	 yields

� � �	 �� � 1
�det A�	 �R

� � ��
� �

,

i.e.

� � 1
V

�	 ��� �
� �

� �R� � ��

since �det A� is the volume V of � .
This interpolation formula is traditionally credited to Shannon

(1949), although it was discovered much earlier by Whittaker
(1915). It shows that � may be recovered from its sample values on

� (i.e. from R� � �) provided 
� is sufficiently fine that no overlap
(or ‘aliasing’) occurs in the periodization of  by the dual lattice 
.
The interpolation kernel is the transform of the normalized indicator
function of a unit cell of 
 containing the support K of .

If K is contained in a sphere of radius 1�	 and if 
 and 
� are
rectangular, the length of each basis vector of 
 must be greater
than 2�	, and thus the sampling interval must be smaller than 	�2.
This requirement constitutes the Shannon sampling criterion.

1.3.2.7.2. Duality between subdivision and decimation of
period lattices

1.3.2.7.2.1. Geometric description of sublattices
Let 
A be a period lattice in �n with matrix A, and let 
�A be the

lattice reciprocal to 
A, with period matrix �A
1�T . Let 
B, B,
�B be
defined similarly, and let us suppose that 
A is a sublattice of 
B,
i.e. that 
B � 
A as a set.

The relation between 
A and 
B may be described in two
different fashions: (i) multiplicatively, and (ii) additively.

(i) We may write A � BN for some non-singular matrix N with
integer entries. N may be viewed as the period matrix of the coarser
lattice 
A with respect to the period basis of the finer lattice 
B. It
will be more convenient to write A � DB, where D � BNB
1 is a
rational matrix (with integer determinant since det D � det N) in
terms of which the two lattices are related by


A � D
B�

(ii) Call two vectors in 
B congruent modulo 
A if their
difference lies in 
A. Denote the set of congruence classes (or
‘cosets’) by 
B�
A, and the number of these classes by �
B � 
A�.
The ‘coset decomposition’


B �
�

��
B�
A

�� 	 
A�

represents 
B as the disjoint union of �
B � 
A� translates of

A� 
B�
A is a finite lattice with �
B � 
A� elements, called the
residual lattice of 
B modulo 
A.

The two descriptions are connected by the relation
�
B � 
A� � det D � det N, which follows from a volume calcula-
tion. We may also combine (i) and (ii) into

�iii� 
B �
�

��
B�
A

�� 	 D
B�

which may be viewed as the n-dimensional equivalent of the
Euclidean algorithm for integer division: � is the ‘remainder’ of the
division by 
A of a vector in 
B, the quotient being the matrix D.

1.3.2.7.2.2. Sublattice relations for reciprocal lattices
Let us now consider the two reciprocal lattices 
�A and 
�B. Their

period matrices �A
1�T and �B
1�T are related by:
�B
1�T � �A
1�T NT , where NT is an integer matrix; or equivalently
by �B
1�T � DT �A
1�T . This shows that the roles are reversed in
that 
�B is a sublattice of 
�A, which we may write:

�i�� 
�B � DT
�A

�ii�� 
�A �
�

���
�A�
�B
��� 	 
�B��

The residual lattice 
�A�

�
B is finite, with �
�A � 
�B� �

det D � det N � �
B � 
A�, and we may again combine �i�� and
�ii�� into

�iii�� 
�A �
�

���
�A�
�B
��� 	 DT
�A��

1.3.2.7.2.3. Relation between lattice distributions
The above relations between lattices may be rewritten in terms of

the corresponding lattice distributions as follows:

�i� RA � 1
�det D�D

�R�B

�ii� RB � TB�A � RA

�i�� R�B �
1

�det D� �D
T��R�A

�ii�� R�A � T�A�B � R�B

where

TB�A �
�

��
B�
A

����

and

T�A�B �
�

���
�A�
�B
�����

are (finite) residual-lattice distributions. We may incorporate the
factor 1��det D� in (i) and �i�� into these distributions and define

SB�A � 1
�det D� TB�A, S�A�B �

1
�det D� T

�
A�B�

Since �det D� � �
B � 
A� � �
�A � 
�B�, convolution with SB�A
and S�A�B has the effect of averaging the translates of a distribution
under the elements (or ‘cosets’) of the residual lattices 
B�
A and

�A�


�
B, respectively. This process will be called ‘coset averaging’.

Eliminating RA and RB between (i) and (ii), and R�A and R�B between
�i�� and �ii��, we may write:

�i�� RA � D��SB�A � RA�
�ii�� RB � SB�A � �D�RB�
�i��� R�B � �DT ���S�A�B � R�B�
�ii��� R�A � S�A�B � ��DT��R�A��

These identities show that period subdivision by convolution with
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SB�A (respectively S�A�B) on the one hand, and period decimation by
‘dilation’ by D� on the other hand, are mutually inverse operations
on RA and RB (respectively R�A and R�B).

1.3.2.7.2.4. Relation between Fourier transforms
Finally, let us consider the relations between the Fourier

transforms of these lattice distributions. Recalling the basic relation
of Section 1.3.2.6.5,

	 �RA� � 1
�det A�R

�
A

� 1
�det DB� T

�
A�B � R�B by (ii)�

� 1
�det D� T

�
A�B

� �
� 1
�det B�R

�
B

� �

i.e.

�iv� 	 �RA� � S�A�B � 	 �RB�
and similarly:

�v� 	 �R�B� � SB�A � 	 �R�A��
Thus RA (respectively R�B), a decimated version of RB

(respectively R�A), is transformed by 	 into a subdivided version
of 	 �RB� (respectively 	 �R�A�).

The converse is also true:

	 �RB� � 1
�det B�R

�
B

� 1
�det B�

1
�det D� �D

T��R�A by (i)�

� �DT �� 1
�det A�R

�
A

� �

i.e.

�iv�� 	 �RB� � �DT ��	 �RA�
and similarly

�v�� 	 �R�A� � D�	 �R�B��
Thus RB (respectively R�A), a subdivided version of RA

(respectively R�B) is transformed by 	 into a decimated version of
	 �RA� (respectively 	 �R�B�). Therefore, the Fourier transform
exchanges subdivision and decimation of period lattices for lattice
distributions.

Further insight into this phenomenon is provided by applying �	
to both sides of (iv) and (v) and invoking the convolution theorem:

�iv��� RA � �	 �S�A�B� � RB

�v��� R�B � �	 �SB�A� � R�A�

These identities show that multiplication by the transform of the
period-subdividing distribution S�A�B (respectively SB�A) has the
effect of decimating RB to RA (respectively R�A to R�B). They clearly
imply that, if � � 
B�
A and �� � 
�A�


�
B, then

�	 �S�A�B���� � 1 if � � 0 �i�e� if � belongs

to the class of 
A�,
� 0 if � �� 0;

�	 �SB�A����� � 1 if �� � 0 �i�e� if �� belongs

to the class of 
�B�,
� 0 if �� �� 0�

Therefore, the duality between subdivision and decimation may be
viewed as another aspect of that between convolution and
multiplication.

There is clearly a strong analogy between the sampling/
periodization duality of Section 1.3.2.6.6 and the decimation/
subdivision duality, which is viewed most naturally in terms of
subgroup relationships: both sampling and decimation involve
restricting a function to a discrete additive subgroup of the domain
over which it is initially given.

1.3.2.7.2.5. Sublattice relations in terms of periodic
distributions

The usual presentation of this duality is not in terms of lattice
distributions, but of periodic distributions obtained by convolving
them with a motif.

Given T0 � � ���n�, let us form RA � T0, then decimate its
transform �1��det A��R�A � �	 �T0� by keeping only its values at the
points of the coarser lattice 
�B � DT
�A; as a result, R�A is replaced
by �1��det D��R�B, and the reverse transform then yields

1
�det D�RB � T0 � SB�A � �RA � T0� by (ii),

which is the coset-averaged version of the original RA � T0. The
converse situation is analogous to that of Shannon’s sampling
theorem. Let a function � � ���n� whose transform  � 	 ��� has
compact support be sampled as RB � � at the nodes of 
B. Then

	 �RB � �� � 1
�det B� �R

�
B � �

is periodic with period lattice 
�B. If the sampling lattice 
B is
decimated to 
A � D
B, the inverse transform becomes

	 �RA � �� � 1
�det D� �R

�
A � �

� S�A�B � �R�B � � by (ii)�,

hence becomes periodized more finely by averaging over the cosets
of 
�A�


�
B. With this finer periodization, the various copies of Supp

 may start to overlap (a phenomenon called ‘aliasing’), indicating
that decimation has produced too coarse a sampling of �.

1.3.2.7.3. Discretization of the Fourier transformation

Let �0 � ���n� be such that 0 � 	 ��0� has compact support
(�0 is said to be band-limited). Then � � RA � �0 is 
A-periodic,
and  � 	 ��� � �1��det A��R�A � 0 is such that only a finite
number of points ��A of 
�A have a non-zero Fourier coefficient
0���A� attached to them. We may therefore find a decimation 
�B �
DT
�A of 
�A such that the distinct translates of Supp 0 by vectors
of 
�B do not intersect.

The distribution  can be uniquely recovered from R�B �  by the
procedure of Section 1.3.2.7.1, and we may write:

R�B �  �
1

�det A�R
�
B � �R�A � 0�

� 1
�det A�R

�
A � �R�B � 0�

� 1
�det A�R

�
B � �T�A�B � �R�B � 0��;

these rearrangements being legitimate because 0 and T�A�B have
compact supports which are intersection-free under the action of

�B. By virtue of its 
�B-periodicity, this distribution is entirely
characterized by its ‘motif’ � with respect to 
�B:
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� � 1
�det A� T

�
A�B � �R�B � 0��

Similarly, � may be uniquely recovered by Shannon interpola-
tion from the distribution sampling its values at the nodes of 
B �
D
1
A�
B is a subdivision of 
B). By virtue of its 
A-periodicity,
this distribution is completely characterized by its motif:

�� � TB�A � � � TB�A � �R�A � �0��
Let � � 
B�
A and �� � 
�A�


�
B, and define the two sets of

coefficients

�1� ����� � ��� 	 �A� for any �A � 
A

�all choices of �A give the same ���,
�2� ����� � 0��� 	 ��B� for the unique ��B (if it exists)

such that �� 	 ��B � Supp 0,
� 0 if no such ��B exists�

Define the two distributions

� � �
��
B�
A

���������

and

� � �
���
�A�
�B

�����������

The relation between � and � has two equivalent forms:

�i� RA � � � 	 �R�B � ��
�ii� �	 �RA � �� � R�B � ��
By (i), RA � � � �det B�RB � 	 ���. Both sides are weighted

lattice distributions concentrated at the nodes of 
B, and equating
the weights at �B � � 	 �A gives

����� � 1
�det D�

�
���
�A�
�B

����� exp�
2�i�� � �� 	 �A���

Since �� � 
�A, �� � �A is an integer, hence

����� � 1
�det D�

�
���
�A�
�B

����� exp�
2�i�� � ���

By (ii), we have

1
�det A�R

�
B � �T�A�B � �R�B � 0�� � 1

�det A�
�	 �RA � ���

Both sides are weighted lattice distributions concentrated at the
nodes of 
�B, and equating the weights at ��A � �� 	 ��B gives

����� � �
��
B�
A

����� exp�	2�i� � ��� 	 ��B���

Since � � 
B, � � ��B is an integer, hence

����� � �
��
B�
A

����� exp�	2�i� � ����

Now the decimation/subdivision relations between 
A and 
B
may be written:

A � DB � BN,

so that

� � B� for � � �n

�� � �A
1�T�� for �� � �n

with �A
1�T � �B
1�T�N
1�T , hence finally

�� � � � � � �� � �� � �N
1���

Denoting ���B�� by ���� and ���A
1�T��� by �����, the relation
between � and � may be written in the equivalent form

�i� ���� � 1
�det N�

�
����n�NT�n

����� exp�
2�i�� � �N
1���

�ii� ����� �
�

���n�N�n

���� exp�	2�i�� � �N
1���,

where the summations are now over finite residual lattices in
standard form.

Equations (i) and (ii) describe two mutually inverse linear
transformations 	 �N� and �	 �N� between two vector spaces WN
and W �

N of dimension �det N�. 	 �N� [respectively �	 �N�] is the
discrete Fourier (respectively inverse Fourier) transform associated
to matrix N.

The vector spaces WN and W �
N may be viewed from two different

standpoints:
(1) as vector spaces of weighted residual-lattice distributions, of

the form ��x�TB�A and ��x�T�A�B; the canonical basis of WN
(respectively W �

N) then consists of the ���� for � � �n�N�n

[respectively ����� for �� � �n�NT�n];
(2) as vector spaces of weight vectors for the �det N� �-functions

involved in the expression for TB�A (respectively T�A�B); the
canonical basis of WN (respectively W �

N) consists of weight vectors
u� (respectively v��) giving weight 1 to element � (respectively ��)
and 0 to the others.

These two spaces are said to be ‘isomorphic’ (a relation denoted
#), the isomorphism being given by the one-to-one correspondence:

� ��
�
�������� $ � ��

�
����u�

� ��
��
���������� $ � ��

��
�����v�� �

The second viewpoint will be adopted, as it involves only linear
algebra. However, it is most helpful to keep the first one in mind and
to think of the data or results of a discrete Fourier transform as
representing (through their sets of unique weights) two periodic
lattice distributions related by the full, distribution-theoretic Fourier
transform.

We therefore view WN (respectively W �
N) as the vector space of

complex-valued functions over the finite residual lattice 
B�
A
(respectively 
�A�


�
B) and write:

WN # L�
B�
A� # L��n�N�n�
W �

N # L�
�A�
�B� # L��n�NT�n�

since a vector such as � is in fact the function � �
� ����.
The two spaces WN and W �

N may be equipped with the following
Hermitian inner products:

��,��W �
�
�
��������

�,��W � ��
�
���������,

which makes each of them into a Hilbert space. The canonical bases
�u��� � �n�N�n� and �v�� ��� � �n�NT�n� and WN and W �

N are
orthonormal for their respective product.
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1.3.2.7.4. Matrix representation of the discrete Fourier
transform (DFT)

By virtue of definitions (i) and (ii),

	 �N�v�� � 1
�det N�

�
�

exp�
2�i�� � �N
1���u�

�	 �N�u� �
�
��

exp�	2�i�� � �N
1���v��

so that 	 �N� and �	 �N� may be represented, in the canonical bases
of WN and W �

N, by the following matrices:

�	 �N����� �
1

�det N� exp�
2�i�� � �N
1���

� �	 �N����� � exp�	2�i�� � �N
1����
When N is symmetric, �n�N�n and �n�NT�n may be identified

in a natural manner, and the above matrices are symmetric.
When N is diagonal, say N � diag�
1, 
2, � � � , 
n�, then the

tensor product structure of the full multidimensional Fourier
transform (Section 1.3.2.4.2.4)

	 x � 	 x1 � 	 x2 � � � �� 	 xn

gives rise to a tensor product structure for the DFT matrices. The
tensor product of matrices is defined as follows:

A� B �
a11B � � � a1nB
��
� ��

�

an1B � � � annB

�
��

�
	
�

Let the index vectors � and �� be ordered in the same way as the
elements in a Fortran array, e.g. for � with �1 increasing fastest, �2
next fastest, � � � , �n slowest; then

	 �N� � 	 �
1� � 	 �
2� � � � �� 	 �
n�,
where

�	 �
j���j� ��j
� 1


j
exp 
2�i

��j �j


j

� �
,

and
�	 �N� � �	 �
1� � �	 �
2� � � � �� �	 �
n�,

where

� �	
j ���j � �j
� exp 	2�i

��j �j


j

� �
�

1.3.2.7.5. Properties of the discrete Fourier transform

The DFT inherits most of the properties of the Fourier
transforms, but with certain numerical factors (‘Jacobians’) due to
the transition from continuous to discrete measure.

(1) Linearity is obvious.
(2) Shift property. If ������� � ��� 
 � and ��������� �

���� 
 ��, where subtraction takes place by modular vector
arithmetic in �n�N�n and �n�NT�n, respectively, then the
following identities hold:

�	 �N���������� � exp�	2�i�� � �N
1��� �	 �N��������
	 �N���������� � exp�
2�i�� � �N
1���	 �N��������

(3) Differentiation identities. Let vectors � and � be constructed
from �0 � ���n� as in Section 1.3.2.7.3, hence be related by the
DFT. If Dp� designates the vector of sample values of Dp

x�
0 at the

points of 
B�
A, and Dp� the vector of values of Dp
�

0 at points of


�A�

�
B, then for all multi-indices p � �p1, p2, � � � , pn�

�Dp����� � �	 �N���	2�i���p�����
�Dp������ � 	 �N���
2�i��p� �����

or equivalently

	 �N��Dp� ����� � �	2�i���p�����
�	 �N��Dp����� � �
2�i��p�����

(4) Convolution property. Let � � WN and � � W �
N (respec-

tively � and �) be related by the DFT, and define

�� � ����� � �
����n�N�n

�������� 
 ���

�� ������� � �
��� ��n�NT�n

����� ����� 
 ��
� ��

Then
�	 �N��� ������ � �det N���������
	 �N��� � � ����� � ����������

and

�	 �N��� � � ����� � 1
�det N� �� �����

��

	 �N��������� � �� � ������
Since addition on �n�N�n and �n�NT�n is modular, this type of
convolution is called cyclic convolution.

(5) Parseval/Plancherel property. If �, �, �, � are as above,
then

�	 �N����,	 �N�����W �
1

�det N� ��,��W �

� �	 �N����, �	 �N��� ��W �
1

�det N� ��,��W �

(6) Period 4. When N is symmetric, so that the ranges of indices �
and �� can be identified, it makes sense to speak of powers of 	 �N�
and �	 �N�. Then the ‘standardized’ matrices �1��det N�1�2�	 �N�
and �1��det N�1�2� �	 �N� are unitary matrices whose fourth power is
the identity matrix (Section 1.3.2.4.3.4); their eigenvalues are
therefore  1 and  i.

1.3.3. Numerical computation of the discrete Fourier
transform

1.3.3.1. Introduction

The Fourier transformation’s most remarkable property is
undoubtedly that of turning convolution into multiplication. As
distribution theory has shown, other valuable properties – such as
the shift property, the conversion of differentiation into multi-
plication by monomials, and the duality between periodicity and
sampling – are special instances of the convolution theorem.

This property is exploited in many areas of applied mathematics
and engineering (Campbell & Foster, 1948; Sneddon, 1951;
Champeney, 1973; Bracewell, 1986). For example, the passing of
a signal through a linear filter, which results in its being convolved
with the response of the filter to a �-function ‘impulse’, may be
modelled as a multiplication of the signal’s transform by the
transform of the impulse response (also called transfer function).
Similarly, the solution of systems of partial differential equations
may be turned by Fourier transformation into a division problem for
distributions. In both cases, the formulations obtained after Fourier
transformation are considerably simpler than the initial ones, and
lend themselves to constructive solution techniques.
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