International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B, ch. 1.5, p. 176   | 1 | 2 |
https://doi.org/10.1107/97809553602060000553

Appendix A1.5.1. Reciprocal-space groups [{\cal G}^{*}]

M. I. Aroyoa* and H. Wondratschekb

aFaculty of Physics, University of Sofia, bulv. J. Boucher 5, 1164 Sofia, Bulgaria , and bInstitut für Kristallographie, Universität, D-76128 Karlsruhe, Germany
Correspondence e-mail:  aroyo@phys.uni-sofia.bg

This table is based on Table 1 of Wintgen (1941)[link].

In order to obtain the Hermann–Mauguin symbol of [{\cal G}^{*}] from that of [{\cal G}], one replaces any screw rotations by rotations and any glide reflections by reflections. The result is the symmorphic space group [{\cal G}_{0}] assigned to [{\cal G}]. For most space groups [{\cal G}], the reciprocal-space group [{\cal G}^{*}] is isomorphic to [{\cal G}_{0}], i.e. [{\cal G}^{*}] and [{\cal G}] belong to the same arithmetic crystal class. In the following cases the arithmetic crystal classes of [{\cal G}] and [{\cal G}^{*}] are different, i.e. [{\cal G}^{*}] can not be obtained in this simple way:

  • (1) If the lattice symbol of [{\cal G}] is F or I, it has to be replaced by I or F. The tetragonal space groups form an exception to this rule; for these the symbol I persists.

  • (2) The other exceptions are listed in the following table (for the symbols of the arithmetic crystal classes see IT A, Section 8.2.3[link] ):[\eqalign{\hbox{Arithmetic }&\hbox{crystal class of } {\cal G}\quad\quad\hbox{Reciprocal-space group } {\cal G}^{{*}}\cr &\bar{4}m2I\phantom{ithmetic crystal class of }\qquad \ I\bar{4}2m\cr &\bar{4}2mI\phantom{ithmetic crystal class of }\qquad \ I\bar{4}m2\cr &321P\phantom{ithmetic crystal class of }\qquad \ P312\cr &312P\phantom{ithmetic crystal class of }\qquad \ P321\cr &3m1P\phantom{ithmetic crystal class of }\qquad P31m\cr &31mP\phantom{ithmetic crystal class of }\qquad P3m1\cr &\bar{3}1mP\phantom{ithmetic crystal class of }\qquad P\bar{3}m1\cr &\bar{3}m1P\phantom{ithmetic crystal class of }\qquad P\bar{3}1m\cr &\bar{6}m2P\phantom{ithmetic crystal class of }\qquad P\bar{6}2m\cr &\bar{6}2mP\phantom{ithmetic crystal class of }\qquad P\bar{6}m2\cr}]

References

Wintgen, G. (1941). Zur Darstellungstheorie der Raumgruppen. Math. Ann. 118, 195–215. (In German.)








































to end of page
to top of page