International Tables for Crystallography (2006). Vol. B, ch. 2.1, pp. 190-209   | 1 | 2 |
https://doi.org/10.1107/97809553602060000554

Chapter 2.1. Statistical properties of the weighted reciprocal lattice

Chapter index

Assumption of independence 2.1.8.3
Assumption of uniformity 2.1.7.1, 2.1.8.3
Atomic characteristic functions 2.1.8.5
Average intensity
of general reflections 2.1.2
of zones and rows 2.1.3
Average multiples for point groups 2.1.3.3
Beta distribution
first kind 2.1.5.1
second kind 2.1.5.1
Central-limit theorem 2.1.4.3
Lindeberg–Lévy version 2.1.7.1
Centring
effect of 2.1.2.4
Characteristic functions 2.1.4.1, 2.1.8.1
atomic 2.1.8.5
Correction-factor approach 2.1.7, 2.1.8.7
Crystallographic statistics 2.1.7.1
Cumulant-generating functions 2.1.4.2
Cumulative distribution functions 2.1.5.6
Delta functions
periodic 2.1.8.4
Distribution function
cumulative 2.1.5.6
Distributions
beta, first kind 2.1.5.1
beta, second kind 2.1.5.1
gamma 2.1.5.1
hypersymmetric 2.1.5.4
ideal acentric 2.1.5.1
ideal centric 2.1.5.2
non-ideal 2.1.7, 2.1.8
of sums, averages and ratios 2.1.6
probability density 2.1.4
probability density, ideal 2.1.5
Effect of centring 2.1.2.4
Fourier approach 2.1.8.7
Fourier–Bessel series 2.1.8.3
Fourier method 2.1.8
Gamma distribution 2.1.5.1
General reflections, average intensity of 2.1.2
Hypersymmetric distributions 2.1.5.4
Ideal acentric distributions 2.1.5.1
Ideal centric distributions 2.1.5.2
Ideal probability density distributions 2.1.5
Independence, assumption of 2.1.8.3
Lindeberg–Lévy version of the central-limit theorem 2.1.7.1
Meijer's G function 2.1.5.4
Non-ideal distributions 2.1.7, 2.1.8
Non-ideal probability density functions 2.1.8.6
of |E| 2.1.7.3
Non-independent variables 2.1.4.5
Partially bicentric arrangement 2.1.8.6
Periodic delta functions 2.1.8.4
Point groups
average multiples for 2.1.3.3
Probability density distributions 2.1.4
ideal 2.1.5
Probability density functions 2.1.7.1
non-ideal 2.1.8.6
of |E|, non-ideal 2.1.7.3
Random-walk problem
exact solution 2.1.8
Reciprocal lattice
weighted, statistical properties of 2.1.1
Statistical properties of the weighted reciprocal lattice 2.1.1
Statistics
crystallographic 2.1.7.1
Structure factors
trigonometric, even absolute moments of 2.1.7.1
trigonometric, moment of 2.1.7.3
Subcentric arrangement 2.1.8.6
Trigonometric structure factors
even absolute moments of 2.1.7.1
moment of 2.1.7.3
Uniformity, assumption of 2.1.7.1, 2.1.8.3
Weighted reciprocal lattice
statistical properties of 2.1.1
Zones and rows, average intensity of 2.1.3