
2.2. Direct methods

BY C. GIACOVAZZO

2.2.1. List of symbols and abbreviations

fj atomic scattering factor of jth atom
Zj atomic number of jth atom
N number of atoms in the unit cell
m order of the point group

��r�p, ��r�q, ��r�N , � � � ��p

j�1
Zr

j ,
�q

j�1
Zr

j ,
�N

j�1
Zr

j , � � �

��r�N is always abbreviated to �r when N is the number of atoms in
the cell

�
p ,

�
q ,

�
N , � � � ��p

j�1
f 2
j ,

�q

j�1
f 2
j ,

�N

j�1
f 2
j , � � �

s.f. structure factor
n.s.f. normalized structure factor
cs. centrosymmetric
ncs. noncentrosymmetric
s.i. structure invariant
s.s. structure seminvariant
C � �R, T� symmetry operator; R is the rotational part, T the

translational part
�h phase of the structure factor Fh � �Fh� exp�i�h�

2.2.2. Introduction

Direct methods are today the most widely used tool for solving
small crystal structures. They work well both for equal-atom
molecules and when a few heavy atoms exist in the structure. In
recent years the theoretical background of direct methods has been
improved to take into account a large variety of prior information
(the form of the molecule, its orientation, a partial structure, the
presence of pseudosymmetry or of a superstructure, the availability
of isomorphous data or of data affected by anomalous-dispersion
effects, . . .). Owing to this progress and to the increasing
availability of powerful computers, a number of effective, highly
automated packages for the practical solution of the phase problem
are today available to the scientific community.

The ab initio crystal structure solution of macromolecules seems
not to exceed the potential of direct methods. Many efforts will
certainly be devoted to this task in the near future: a report of the
first achievements is given in Section 2.2.10.

This chapter describes both the traditional direct methods tools
and the most recent and revolutionary techniques suitable for
macromolecules.

The theoretical background and tables useful for origin
specification are given in Section 2.2.3; in Section 2.2.4 the
procedures for normalizing structure factors are summarized.
Phase-determining formulae (inequalities, probabilistic formulae
for triplet, quartet and quintet invariants, and for one- and two-
phase s.s.’s, determinantal formulae) are given in Section 2.2.5. In
Section 2.2.6 the connection between direct methods and related
techniques in real space is discussed. Practical procedures for
solving crystal structures are described in Sections 2.2.7 and 2.2.8,
and references to the most extensively used packages are given in
Section 2.2.9. The techniques suitable for the ab initio crystal
structure solution of macromolecules are described in Section
2.2.10.2. The integration of direct methods with isomorphous-
replacement and anomalous-dispersion techniques is briefly
described in Sections 2.2.10.3 and 2.2.10.4.

The reader will find full coverage of the most important aspects
of direct methods in the recent books by Giacovazzo (1998) and
Woolfson & Fan (1995).

2.2.3. Origin specification

(a) Once the origin has been chosen, the symmetry operators
Cs � �Rs, Ts� and, through them, the algebraic form of the s.f.
remain fixed.

A shift of the origin through a vector with coordinates X0
transforms �h into

��h � �h 	 2�h 
 X0 �2�2�3�1�
and the symmetry operators Cs into C�

s � �R�
s, T�

s�, where

R�
s � Rs; T�

s � Ts � �Rs 	 I�X0 s � 1, 2, � � � , m� �2�2�3�2�
(b) Allowed or permissible origins (Hauptman & Karle, 1953,

1959) for a given algebraic form of the s.f. are all those points in
direct space which, when taken as origin, maintain the same
symmetry operators Cs. The allowed origins will therefore
correspond to those points having the same symmetry environment
in the sense that they are related to the symmetry elements in the
same way. For instance, if Ts � 0 for s � 1, � � � , 8, then the allowed
origins in Pmmm are the eight inversion centres.

To each functional form of the s.f. a set of permissible origins
will correspond.

(c) A translation between permissible origins will be called a
permissible or allowed translation. Trivial allowed translations
correspond to the lattice periods or to their multiples. A change of
origin by an allowed translation does not change the algebraic form
of the s.f. Thus, according to (2.2.3.2), all origins allowed by a fixed
functional form of the s.f. will be connected by translational vectors
Xp such that

�Rs 	 I�Xp � V, s � 1, 2, � � � , m, �2�2�3�3�
where V is a vector with zero or integer components.

In centred space groups, an origin translation corresponding to a
centring vector Bv does not change the functional form of the s.f.
Therefore all vectors Bv represent permissible translations. Xp will
then be an allowed translation (Giacovazzo, 1974) not only when, as
imposed by (2.2.3.3), the difference T�

s 	 Ts is equal to one or more
lattice units, but also when, for any s, the condition

�Rs 	 I�Xp � V� �Bv, s � 1, 2, � � � , m; � � 0, 1 �2�2�3�4�
is satisfied.

We will call any set of cs. or ncs. space groups having the same
allowed origin translations a Hauptman–Karle group (H–K group).
The 94 ncs. primitive space groups, the 62 primitive cs. groups, the
44 ncs. centred space groups and the 30 cs. centred space groups can
be collected into 13, 4, 14 and 5 H–K groups, respectively
(Hauptman & Karle, 1953, 1956; Karle & Hauptman, 1961;
Lessinger & Wondratschek, 1975). In Tables 2.2.3.1–2.2.3.4 the
H–K groups are given together with the allowed origin translations.

(d) Let us consider a product of structure factors

FA1
h1
� FA2

h2
� � � �� FAn

hn
� �n

j�1
F

Aj

hj

� exp i
�n

j�1
Aj�hj

� �
�n

j�1
�Fhj �Aj ,

�2�2�3�5�
Aj being integer numbers.

The factor
�n

j�1 Aj�hj is the phase of the product (2.2.3.5). A
structure invariant (s.i.) is a product (2.2.3.5) such that
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�n

j�1
Ajhj � 0� �2�2�3�6�

Since �Fhj � are usually known from experiment, it is often said that
s.i.’s are combinations of phases

�n

j�1
Aj�hj , �2�2�3�7�

for which (2.2.3.6) holds.
F0, FhF	h, FhFkFh�k, FhFkFlFh�k�l, FhFkFlFpFh�k�l�p are

examples of s.i.’s for n � 1, 2, 3, 4, 5.
The value of any s.i. does not change with an arbitrary shift of the

space-group origin and thus it will depend on the crystal structure
only.

(e) A structure seminvariant (s.s.) is a product of structure factors
[or a combination of phases (2.2.3.7)] whose value is unchanged
when the origin is moved by an allowed translation.

Let Xp’s be the permissible origin translations of the space group.
Then the product (2.2.3.5) [or the sum (2.2.3.7)] is an s.s., if, in
accordance with (2.2.3.1),

�n

j�1
Aj�hj 
 Xp� � r, p � 1, 2, � � � �2�2�3�8�

where r is a positive integer, null or a negative integer.
Conditions (2.2.3.8) can be written in the following more useful

form (Hauptman & Karle, 1953):

�n

j�1
Ajhsj � 0 �mod �s�, �2�2�3�9�

where hsj is the vector seminvariantly associated with the vector hj
and �s is the seminvariant modulus. In Tables 2.2.3.1–2.2.3.4, the
reflection hs seminvariantly associated with h � �h, k, l�, the
seminvariant modulus � s and seminvariant phases are given for
every H–K group.

The symbol of any group (cf. Giacovazzo, 1974) has the structure
hsL� s, where L stands for the lattice symbol. This symbol is
underlined if the space group is cs.

By definition, if the class of permissible origin has been chosen,
that is to say, if the algebraic form of the symmetry operators has
been fixed, then the value of an s.s. does not depend on the origin
but on the crystal structure only.

Table 2.2.3.1. Allowed origin translations, seminvariant moduli and phases for centrosymmetric primitive space groups

H–K group

�h, k, l�P�2, 2, 2� �h� k, l�P�2, 2� �l�P�2� �h� k � l�P�2�
Space group P�1 Pmna P

4
m

P
4
n

mm P�3 R�3

P
2
m

Pcca P
42

m
P

4
n

cc P�31m R�3m

P
21

m
Pbam P

4
n

P
42

m
mc P�31c R�3c

P
2
c

Pccn P
42

n
P

42

m
cm P�3m1 Pm�3

P
21

c
Pbcm P

4
m

mm P
42

n
bc P�3c1 Pn�3

Pmmm Pnnm P
4
m

cc P
42

n
nm P

6
m

Pa�3

Pnnn Pmmn P
4
n

bm P
42

m
bc P

63

m
Pm�3m

Pccm Pbcn P
4
n

nc P
42

m
nm P

6
m

mm Pn�3n

Pban Pbca P
4
m

bm P
42

n
mc P

6
m

cc Pm�3n

Pmma Pnma P
4
m

nc P
42

n
cm P

63

m
cm Pn�3m

Pnna P
63

m
mc

Allowed origin translations (0, 0, 0); �0, 1
2 , 1

2� (0, 0, 0) (0, 0, 0) (0, 0, 0)

�1
2 , 0, 0�; �1

2 , 0, 1
2� �0, 0, 1

2� �0, 0, 1
2� �1

2 , 1
2 , 1

2�
�0, 1

2 , 0�; �1
2 , 1

2 , 0� �1
2 , 1

2 , 0�
�0, 0, 1

2�; �1
2 , 1

2 , 1
2� �1

2 , 1
2 , 1

2�
Vector hs seminvariantly associated
with h � �h, k, l�

�h, k, l� �h� k, l� (l) �h� k � l�

Seminvariant modulus �s (2, 2, 2) (2, 2) (2) (2)

Seminvariant phases �eee �eee; �ooe �eee; �eoe �eee; �ooe

�oee; �ooe �oeo; �eoo

Number of semindependent phases
to be specified

3 2 1 1
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( f ) Suppose that we have chosen the symmetry operators Cs and
thus fixed the functional form of the s.f.’s and the set of allowed
origins. In order to describe the structure in direct space a unique
reference origin must be fixed. Thus the phase-determining process
must also require a unique permissible origin congruent to the
values assigned to the phases. More specifically, at the beginning of
the structure-determining process by direct methods we shall assign
as many phases as necessary to define a unique origin among those
allowed (and, as we shall see, possibly to fix the enantiomorph).
From the theory developed so far it is obvious that arbitrary phases
can be assigned to one or more s.f.’s if there is at least one allowed
origin which, fixed as the origin of the unit cell, will give those
phase values to the chosen reflections. The concept of linear
dependence will help us to fix the origin.

(g) n phases �hj are linearly semidependent (Hauptman & Karle,
1956) when the n vectors hsj seminvariantly associated with the hj
are linearly dependent modulo � s, �s being the seminvariant
modulus of the space group. In other words, when

�n

j�1
Ajhsj � 0 �mod �s�, Aq 
� 0 �mod �s� �2�2�3�10�

is satisfied. The second condition means that at least one Aq exists
that is not congruent to zero modulo each of the components of �s.
If (2.2.3.10) is not satisfied for any n-set of integers Aj, the phases
�hj are linearly semindependent. If (2.2.3.10) is valid for n � 1 and
A � 1, then h1 is said to be linearly semidependent and �h1 is an s.s.
It may be concluded that a seminvariant phase is linearly
semidependent, and, vice versa, that a phase linearly semidependent
is an s.s. In Tables 2.2.3.1–2.2.3.4 the allowed variations (which are
those due to the allowed origin translations) for the semindependent
phases are given for every H–K group. If �h1 is linearly
semindependent its value can be fixed arbitrarily because at least
one origin compatible with the given value exists. Once �h1 is
assigned, the necessary condition to be able to fix a second phase
�h2 is that it should be linearly semindependent of �h1 .

Table 2.2.3

H–K group H–K group

�h, k, l�P(0, 0, 0) �h, k, l�P(2, 0, 2) �h, k, l�P(0, 2, 0) �h, k, l�P(2, 2, 2) �h, k, l�P(2, 2, 0) �h� k, l�P(2, 0) �h� k, l�P(2

Space group P1 P2 Pm P222 Pmm2 P4 P�4

P21 Pc P2221 Pmc21 P41 P422

P21212 Pcc2 P42 P4212

P212121 Pma2 P43 P4122

Pca21 P4mm P41212

Pnc2 P4bm P4222

Pmn21 P42cm P42212

Pba2 P42nm P4322

Pna21 P4cc P43212

Pnn2 P4nc P�42m

P42mc P�42c

P42bc P�421m

P�421c

P�4m2

P�4c2

P�4b2

P�4n2

Allowed origin translations (x, y, z) (0, y, 0) (x, 0, z) (0, 0, 0) (0, 0, z) (0, 0, z) (0, 0, 0)

�0, y, 1
2� �x, 1

2 , z� �12 , 0, 0� �0, 1
2 , z� �12 , 1

2 , z� �0, 0, 1
2�

�12 , y, 0� �0, 1
2 , 0� �12 , 0, z� �12 , 1

2 , 0�
�12 , y, 1

2� �0, 0, 1
2� �12 , 1

2 , z� �12 , 1
2 , 1

2�
�0, 1

2 , 1
2�

�12 , 0, 1
2�

�12 , 1
2 , 0�

�12 , 1
2 , 1

2�
Vector hs seminvariantly associated
with h � �h, k, l�

(h, k, l) (h, k, l) (h, k, l) (h, k, l) (h, k, l) �h� k, l� �h� k, l�

Seminvariant modulus �s (0, 0, 0) (2, 0, 2) (0, 2, 0) (2, 2, 2) (2, 2, 0) (2, 0) (2, 2)

Seminvariant phases �000 �e0e �0e0 �eee �ee0 �ee0 �eee

�oo0 �ooe

Allowed variations for the
semindependent phases

��� ���, �2� if
k � 0

���, �2� if
h � l � 0

�2� ���, �2� if
l � 0

���, �2� if
l � 0

�2�

Number of semindependent phases
to be specified

3 3 3 3 3 2 2

Table 2.2.3.2. Allowed origin translations, seminvariant moduli and phases for noncentrosymmetric primitive space groups
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Similarly, the necessary condition to be able arbitrarily to assign
a third phase �h3 is that it should be linearly semindependent from
�h1 and �h2 .

In general, the number of linearly semindependent phases is
equal to the dimension of the seminvariant vector �s (see Tables
2.2.3.1–2.2.3.4). The reader will easily verify in (h, k, l) P (2, 2, 2)
that the three phases �oee, �eoe, �eoo define the origin (o indicates
odd, e even).

(h) From the theory summarized so far it is clear that a number of
semindependent phases �hj , equal to the dimension of the
seminvariant vector � s, may be arbitrarily assigned in order to fix
the origin. However, it is not always true that only one allowed
origin compatible with the given phases exists. An additional
condition is required such that only one permissible origin should
lie at the intersection of the lattice planes corresponding to the
origin-fixing reflections (or on the lattice plane h if one reflection is
sufficient to define the origin). It may be shown that the condition is
verified if the determinant formed with the vectors seminvariantly

associated with the origin reflections, reduced modulo � s, has the
value �1. In other words, such a determinant should be primitive
modulo �s.

For example, in P�1 the three reflections

h1 � �345�, h2 � �139�, h3 � �784�
define the origin uniquely because

3 4 5
1 3 9
7 8 4

�
�
�
�
�
�

�
�
�
�
�
�

reduced mod �2, 2, 2�
													�

1 0 1
1 1 1
1 0 0

�
�
�
�
�
�

�
�
�
�
�
�
� 	1�

Furthermore, in P4mm �hs � �h� k, l�,� s � �2, 0��
h1 � �5, 2, 0�, h2 � �6, 2, 1�

define the origin uniquely since

groups

H–K group

� k, l�P(2, 0) �h� k, l�P(2, 2) �h	 k, l�P(3, 0) �2h� 4k � 3l�P(6) (l)P(0) (l)P(2) �h� k � l�P(0) �h� k � l�P(2)

P�4 P3 P312 P31m P321 R3 R32

P422 P31 P3112 P31c P3121 R3m P23

P4212 P32 P3212 P6 P3221 R3c P213

P4122 P3m1 P6 P61 P622 P432

mm P41212 P3c1 P�6m2 P65 P6122 P4232

bm P4222 P�6c2 P64 P6522 P4332

cm P42212 P63 P6222 P4132

nm P4322 P62 P6422 P�43m

cc P43212 P6mm P6322 P�43n

nc P�42m P6cc P�62m

mc P�42c P63cm P�62c

bc P�421m P63mc

P�421c

P�4m2

P�4c2

P�4b2

P�4n2

0, z) (0, 0, 0) (0, 0, z) (0, 0, 0) (0, 0, z) (0, 0, 0) (x, x, x) (0, 0, 0)
1
2 , z� �0, 0, 1

2� �13 , 2
3 , z� �0, 0, 1

2� �0, 0, 1
2� �1

2 , 1
2 , 1

2�
�1

2 , 1
2 , 0� �23 , 1

3 , z� �1
3 , 2

3 , 0�
�1

2 , 1
2 , 1

2� �1
3 , 2

3 , 1
2�

�2
3 , 1

3 , 0�
�2

3 , 1
3 , 1

2�

� k, l� �h� k, l� �h	 k, l� �2h� 4k � 3l� (l) (l) �h� k � l� �h� k � l�

0) (2, 2) (3, 0) (6) (0) (2) (0) (2)

0 �eee �hk0 if h	 k � 0 �hkl if 2h� 4k � 3l � 0 �hk0 �hke �h� k� �h��k �eee; �ooe

0 �ooe (mod 3) (mod 6) �oeo; �ooe

�, �2� if
0

�2� ���, �3� if l � 0 �2� if h � k (mod 3)
�3� if l � 0 (mod 2)

��� �2� ��� �2�

2 2 1 1 1 1 1

Table 2.2.3.2. (cont.)
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Table 2.2.3.3. Allowed origin translations, seminvariant moduli and phases for centrosymmetric non-primitive space groups

H–K group

(h, l) C (2, 2) (k, l) I (2, 2) �h� k � l�F�2� (l) I (2) I

Space groups C
2
m

Immm Fmmm I
4
m

Im�3

C
2
c

Ibam Fddd I
41

a
Ia�3

Cmcm Ibca Fm�3 I
4
m

mm Im�3m

Cmca Imma Fd�3 I
4
m

cm Ia�3d

Cmmm Fm�3m I
41

a
md

Cccm Fm�3c I
41

a
cd

Cmma Fd�3m

Ccca Fd�3c

Allowed origin translations (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

�0, 0, 1
2� �0, 0, 1

2� �12 , 1
2 , 1

2� �0, 0, 1
2�

�12 , 0, 0� �0, 1
2 , 0�

�12 , 0, 1
2� �12 , 0, 0�

Vector hs seminvariantly associated with
h � �h, k, l�

�h, l� �k, l� �h� k � l� (l) �h, k, l�

Seminvariant modulus �s (2, 2) (2, 2) (2) (2) (1, 1, 1)

Seminvariant phases �eee �eee �eee �eoe; �eee

�ooe; �oee

All

Number of semindependent phases to be
specified

2 2 1 1 0

Table 2.2.3.4. Allowed origin translations, seminvariant moduli and phases for noncentrosymmetric non-primitive space groups

H–K group H–K group

(k, l)C(0, 2) (h, l)C(0, 0) (h, l)C(2, 0) (h, l)C(2, 2) (h, l)A(2, 0) (h, l)I(2, 0) (h, l)I(2, 2)

Space group C2 Cm Cmm2 C222 Amm2 Imm2 I222

Cc Cmc21 C2221 Abm2 Iba2 I212121

Ccc2 Ama2 Ima2

Aba2

Allowed origin translations (0, y, 0) (x, 0, z) (0, 0, z) (0, 0, 0) (0, 0, z) (0, 0, z) (0, 0, 0)

�0, y, 1
2� �1

2 , 0, z� �0, 0, 1
2� �1

2 , 0, z� �1
2 , 0, z� �0, 0, 1

2�
�1

2 , 0, 0� �0, 1
2 , 0�

�1
2 , 0, 1

2� �1
2 , 0, 0�

Vector hs seminvariantly associated
with h � �h, k, l�

(k, l) (h, l) (h, l) (h, l) (h, l) (h, l) (h, l)

Seminvariant modulus �s (0, 2) (0, 0) (2, 0) (2, 2) (2, 0) (2, 0) (2, 2)

Seminvariant phases �e0e �0e0 �ee0 �eee �ee0 �ee0 �eee

Allowed variations for the
semindependent phases

���,
�2�

if k � 0

��� ���,
�2�

if l � 0

�2� ���,
�2�

if l � 0

���,
�2�

if l � 0

�2�

Number of semindependent phases to
be specified

2 2 2 2 2 2 2
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7 0
8 1

�
�
�
�

�
�
�
�

reduced mod �2, 0�
											�

1 0
0 1

�
�
�
�

�
�
�
� � 1�

(i) If an s.s. or an s.i. has a general value � for a given structure, it
will have a value 	� for the enantiomorph structure. If � � 0, � the
s.s. has the same value for both enantiomorphs. Once the origin has
been assigned, in ncs. space groups the sign of a given s.s. � 
� 0, �
can be assigned to fix the enantiomorph. In practice it is often
advisable to use an s.s. or an s.i. whose value is as near as possible to
���2.

2.2.4. Normalized structure factors

2.2.4.1. Definition of normalized structure factor

The normalized structure factors E (see also Chapter 2.1) are
calculated according to (Hauptman & Karle, 1953)

�Eh�2 � �Fh�2���Fh�2�, �2�2�4�1�
where �Fh�2 is the squared observed structure-factor magnitude on
the absolute scale and ��Fh�2� is the expected value of �Fh�2.
��Fh�2� depends on the available a priori information. Often, but

not always, this may be considered as a combination of several
typical situations. We mention:

(a) No structural information. The atomic positions are
considered random variables. Then

��Fh�2� � �h
�N

j�1
f 2
j � �h

�
N

so that

Eh � Fh

��h
�

N �1�2
� �2�2�4�2�

�h takes account of the effect of space-group symmetry (see Chapter
2.1).

(b) P atomic groups having a known configuration but with
unknown orientation and position (Main, 1976). Then a certain
number of interatomic distances rj1j2 are known and

��Fh�2� � �h

�

N
�
�P

i�1

�Mi

j1 
�j2�1

fj1 fj2
sin 2�qrj1j2

2�qrj1j2

� �

,

where Mi is the number of atoms in the ith molecular fragment and
q � �h�.

(c) P atomic groups with a known configuration, correctly
oriented, but with unknown position (Main, 1976). Then a certain
group of interatomic vectors rj1j2 is fixed and

��Fh�2� � �h
�

N �
�P

i�1

�Mi

j1 
�j2�1
fj1 fj2 exp 2�ih 
 rj1j2

� �

�

The above formula has been derived on the assumption that
primitive positional random variables are uniformly distributed
over the unit cell. Such an assumption may be considered
unfavourable (Giacovazzo, 1988) in space groups for which the
allowed shifts of origin, consistent with the chosen algebraic form
for the symmetry operators Cs, are arbitrary displacements along
any polar axes. Thanks to the indeterminacy in the choice of origin,
the first of the shifts � i (to be applied to the ith fragment in order to
translate atoms in the correct positions) may be restricted to a region
which is smaller than the unit cell (e.g. in P2 we are free to specify

pace groups

H–K group

l)I(2, 0) (h, l)I(2, 2) �h� k � l�F�2� �h� k � l�F�4� (l)I(0) (l)I(2) �2k 	 l�I�4� (l)F(0) I

m2 I222 F432 F222 I4 I422 I�4 Fmm2 I23

2 I212121 F4132 F23 I41 I4122 I�4m2 Fdd2 I213

a2 F�43m I4mm I�42m I�4c2 I432

F�43c I4cm I�42d I4132

I41md I�43m

I41cd I�43d

0, z) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, z) (0, 0, 0) (0, 0, 0) (0, 0, z) (0, 0, 0)

0, z� �0, 0, 1
2� �12 , 1

2 , 1
2� �14 , 1

4 , 1
4� �0, 0, 1

2� �0, 0, 1
2�

�0, 1
2 , 0� �12 , 1

2 , 1
2� �12 , 0, 3

4�
�12 , 0, 0� �34 , 3

4 , 3
4� �12 , 0, 1

4�
l) (h, l) �h� k � l� �h� k � l� (l) (l) �2k 	 l� (l) �h, k, l�

0) (2, 2) (2) (4) (0) (2) (4) (0) (1, 1, 1)

0 �eee �eee �hkl with
h� k � l � 0
(mod 4)

�hk0 �hke �hkl with
�2k 	 l� � 0
(mod 4)

�hk0 All

��,
�2�
l � 0

�2� �2� �2� if
h� k � l � 0
(mod 2)
�4� if h� k � l
� 1 (mod 2)

��� �2� �2� if
h� k � l � 0
(mod 2)
�4� if 2k 	 l �
1 (mod 2)

��� All

2 1 1 1 1 1 1 0

Table 2.2.3.4. (cont.)
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