International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B, ch. 2.5, pp. 276-345   | 1 | 2 |
https://doi.org/10.1107/97809553602060000558

Chapter 2.5. Electron diffraction and electron microscopy in structure determination

J. M. Cowley,a P. Goodman,b B. K. Vainshtein,c B. B. Zvyagind and D. L. Dorsete

aArizona State University, Box 871504, Department of Physics and Astronomy, Tempe, AZ 85287-1504, USA, bSchool of Physics, University of Melbourne, Parkville, Australia 3052, cInstitute of Crystallography, Academy of Sciences of Russia, Leninsky prospekt 59, Moscow B-117333, Russia, dInstitute of Ore Mineralogy (IGEM), Academy of Sciences of Russia, Staromonetny 35, 109017 Moscow, Russia, and  eExxonMobil Research and Engineering Co., 1545 Route 22 East, Clinton Township, Annandale, New Jersey 08801, USA

References

Avilov, A. S. (1979). Electrical measurement of reflection intensities on electron diffraction from mosaic single crystals. Sov. Phys. Crystallogr. 24, 103–104.
Avilov, A. S., Kuligin, A. K., Pietsch, U., Spence, J. C. H., Tsirelson, V. G.& Zuo, J. M. (1999). Scanning system for high-energy electron diffractometry. J. Appl. Cryst. 32, 1033–1038.
Avilov, A. S., Parmon, V. S., Semiletov, S. A. & Sirota, M. I. (1984). Calculation of reflected intensities in multiple-beam diffraction of fast electrons by polycrystalline specimens. Sov. Phys. Crystallogr. 29, 5–7.
Bando, Y. (1981). Weak asymmetry in β-Si3N4 as revealed by convergent beam electron diffraction. Acta Cryst. B39, 185–189.
Bethe, H. A. (1928). Theorie der Beugung von Elektronen an Kristallen. Ann. Phys. (Leipzig), 87, 55–129.
Bilhorn, D. E., Foldy, L. L., Thaler, R. M. & Tobacman, W. (1964). Remarks concerning reciprocity in quantum mechanics. J. Math. Phys. 5, 435–441.
Blackman, M. (1939). On the intensities of electron diffraction rings. Proc. R. Soc. London Ser. A, 173, 68–82.
Bracewell, B. N. (1956). Strip integration in radio astronomy. Austr. J. Phys. 9, 198–217.
Bricogne, G. & Gilmore, C. J. (1990). A multisolution method of phase determination by combined maximization of entropy and likelihood. I. Theory, algorithms and strategy. Acta Cryst. A46, 284–297.
Brisse, F. (1989). Electron diffraction of synthetic polymers: the model compound approach to polymer structure. J. Electron Microsc. Tech. 11, 272–279.
Buxton, B., Eades, J. A., Steeds, J. W. & Rackham, G. M. (1976). The symmetry of electron diffraction zone axis patterns. Philos. Trans. R. Soc. London Ser. A, 181, 171–193.
Carpenter, R. W. & Spence, J. C. H. (1982). Three-dimensional strain-field information in convergent-beam electron diffraction patterns. Acta Cryst. A38, 55–61.
Chou, C. T., Anderson, S. C., Cockayne, D. J. H., Sikorski, A. Z. & Vaughan, M. R. (1994). Ultramicroscopy, 55, 334–347.
Cochran, W., Crick, F. H. C. & Vand, V. (1952). The structure of synthetic polypeptides. 1. The transform of atoms on a helix. Acta Cryst. 5, 581–586.
Cowley, J. M. (1953). Structure analysis of single crystals by electron diffraction. II. Disordered boric acid structure. Acta Cryst. 6, 522–529.
Cowley, J. M. (1956). A modified Patterson function. Acta Cryst. 9, 397–398.
Cowley, J. M. (1961). Diffraction intensities from bent crystals. Acta Cryst. 14, 920–927.
Cowley, J. M. (1969). Image contrast in transmission scanning electron microscopy. Appl. Phys. Lett. 15, 58–59.
Cowley, J. M. (1981). Diffraction physics, 2nd ed. Amsterdam: North-Holland.
Cowley, J. M. (1995). Diffraction physics, 3rd ed. Amsterdam: North-Holland.
Cowley, J. M. & Au, A. Y. (1978). Image signals and detector configurations for STEM. In Scanning electron microscopy, Vol. 1, pp. 53–60. AMF O'Hare, Illinois: SEM Inc.
Cowley, J. M. & Moodie, A. F. (1957). The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst. 10, 609–619.
Cowley, J. M. & Moodie, A. F. (1959). The scattering of electrons by atoms and crystals. III. Single-crystal diffraction patterns. Acta Cryst. 12, 360–367.
Cowley, J. M. & Moodie, A. F. (1960). Fourier images. IV. The phase grating. Proc. Phys. Soc. London, 76, 378–384.
Cowley, J. M., Moodie, A. F., Miyake, S., Takagi, S. & Fujimoto, F. (1961). The extinction rules for reflections in symmetrical electron diffraction spot patterns. Acta Cryst. 14, 87–88.
Cowley, J. M., Rees, A. L. G. & Spink, J. A. (1951). Secondary elastic scattering in electron diffraction. Proc. Phys. Soc. London Sect. A, 64, 609–619.
Cramér, H. (1954). Mathematical methods of statistics. University of Princeton.
Creek, R. C. & Spargo, A. E. C. (1985). Electron optical study of rutile. J. Appl. Cryst. 18, 197–204.
Crowther, R. A. & Amos, L. A. (1971). Harmonic analysis of electron microscope images with rotational symmetry. J. Mol. Biol. 60, 123–130.
Crowther, R. A., Amos, L. A., Finch, J. T., DeRosier, D. J. & Klug, A. (1970). Three dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Nature (London), 226, 421–425.
Crowther, R. A., DeRosier, D. J. & Klug, A. (1970). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. London Ser. A, 317, 319–340.
Crowther, R. A. & Klug, A. (1974). Three dimensional image reconstruction on an extended field – a fast, stable algorithm. Nature (London), 251, 490–492.
Dawson, B., Goodman, P., Johnson, A. W. S., Lynch, D. F. & Moodie, A. F. (1974). Some definitions and units in electron diffraction. Acta Cryst. A30, 297–298.
Deans, S. R. (1983). The Radon transform and some of its applications. New York: John Wiley.
DeRosier, D. J. & Klug, A. (1968). Reconstruction of three dimensional structures from electron micrographs. Nature (London), 217, 130–134.
DeRosier, D. J. & Moore, P. B. (1970). Reconstruction of three-dimensional images from electron micrographs of structure with helical symmetry. J. Mol. Biol. 52, 355–369.
De Titta, G. T., Edmonds, J. W., Langs, D. A. & Hauptman, H. (1975). Use of negative quartet cosine invariants as a phasing figure of merit: NQEST. Acta Cryst. A31, 472–479.
Dong, W., Baird, T., Fryer, J. R., Gilmore, C. J., MacNicol, D. D., Bricogne, G., Smith, D. J., O'Keefe, M. A. & Hovmöller, S. (1992). Electron microscopy at 1 Å resolution by entropy maximization and likelihood ranking. Nature (London), 355, 605–609.
Dorset, D. L. (1976). The interpretation of quasi-kinematical single-crystal electron diffraction intensity data from paraffins. Acta Cryst. A32, 207–215.
Dorset, D. L. (1987). Electron diffraction structure analysis of phospholipids. J. Electron Microsc. Tech. 7, 35–46.
Dorset, D. L. (1990a). Direct structure analysis of a paraffin solid solution. Proc. Natl Acad. Sci. USA, 87, 8541–8544.
Dorset, D. L. (1990b). Direct determination of crystallographic phases for diffraction data from phospholipid multilamellar arrays. Biophys. J. 58, 1077–1087.
Dorset, D. L. (1991a). Electron diffraction structure analysis of diketopiperazine – a direct phase determination. Acta Cryst. A47, 510–515.
Dorset, D. L. (1991b). Is electron crystallography possible? The direct determination of organic crystal structures. Ultramicroscopy, 38, 23–40.
Dorset, D. L. (1991c). Electron diffraction structure analysis of polyethylene. A direct phase determination. Macromolecules, 24, 1175–1178.
Dorset, D. L. (1991d). Electron crystallography of linear polymers: direct structure analysis of poly([epsilon]-caprolactone). Proc. Natl Acad. Sci. USA, 88, 5499–5502.
Dorset, D. L. (1991e). Direct determination of crystallographic phases for diffraction data from lipid bilayers. I. Reliability and phase refinement. Biophys. J. 60, 1356–1365.
Dorset, D. L. (1991f). Direct determination of crystallographic phases for diffraction data from lipid bilayers. II. Refinement of phospholipid structures. Biophys. J. 60, 1366–1373.
Dorset, D. L. (1992a). Direct phasing in electron crystallography: determination of layer silicate structures. Ultramicroscopy, 45, 5–14.
Dorset, D. L. (1992b). Direct methods in electron crystallography – structure analysis of boric acid. Acta Cryst. A48, 568–574.
Dorset, D. L. (1992c). Electron crystallography of linear polymers: direct phase determination for zonal data sets. Macromolecules, 25, 4425–4430.
Dorset, D. L. (1992d). Automated phase determination in electron crystallography: thermotropic phases of thiourea. Ultramicroscopy, 45, 357–364.
Dorset, D. L. (1994a). Electron crystallography of organic molecules. Adv. Electron. Electron Phys. 88, 111–197.
Dorset, D. L. (1994b). Electron crystallography of linear polymers. In Characterization of solid polymers. New techniques and developments, edited by S. J. Spells, pp.1–16. London: Chapman and Hall.
Dorset, D. L. (1994c). Electron crystallography of inorganic compounds. Direct determination of the basic copper chloride structure CuCl2·3Cu(OH)2. J. Chem. Crystallogr. 24, 219–224.
Dorset, D. L. (1994d). Direct determination of layer packing for a phospholipid solid solution at 0.32 nm resolution. Proc. Natl Acad. Sci. USA, 91, 4920–4924.
Dorset, D. L., Beckmann, E. & Zemlin, F. (1990). Direct determination of a phospholipid lamellar structure at 0.34 nm resolution. Proc. Natl Acad. Sci. USA, 87, 7570–7573.
Dorset, D. L. & Hauptman, H. A. (1976). Direct phase determination for quasi-kinematical electron diffraction intensity data from organic microcrystals. Ultramicroscopy, 1, 195–201.
Dorset, D. L., Jap, B. K., Ho, M.-H. & Glaeser, R. M. (1979). Direct phasing of electron diffraction data from organic crystals: the effect of n-beam dynamical scattering. Acta Cryst. A35, 1001–1009.
Dorset, D. L., Kopp, S., Fryer, J. R. & Tivol, W. F. (1995). The Sayre equation in electron crystallography. Ultramicroscopy, 57, 59–89.
Dorset, D. L. & McCourt, M. P. (1992). Effect of dynamical scattering on successful direct phase determination in electron crystallography – a model study. Trans. Am. Crystallogr. Assoc. 28, 105–113.
Dorset, D. L. & McCourt, M. P. (1993). Electron crystallographic analysis of a polysaccharide structure – direct phase determination and model refinement for mannan I. J. Struct. Biol. 111, 118–124.
Dorset, D. L. & McCourt, M. P. (1994a). Automated structure analysis in electron crystallography: phase determination with the tangent formula and least-squares refinement. Acta Cryst. A50, 287–292.
Dorset, D. L. & McCourt, M. P. (1994b). Disorder and molecular packing of C60 buckminsterfullerene: a direct electron-crystallographic analysis. Acta Cryst. A50, 344–351.
Dorset, D. L., McCourt, M. P., Fryer, J. R., Tivol, W. F. & Turner, J. N. (1994). The tangent formula in electron crystallography: phase determination of copper perchlorophthalocyanine. Microsc. Soc. Am. Bull. 24, 398–404.
Dorset, D. L., McCourt, M. P., Kopp, S., Wittmann, J.-C. & Lotz, B. (1994). Direct determination of polymer crystal structures by electron crystallography – isotactic poly(1-butene), form III. Acta Cryst. B50, 201–208.
Dorset, D. L., McCourt, M. P., Tivol, W. F. & Turner, J. N. (1993). Electron diffraction from phospholipids – an approximate correction for dynamical scattering and tests for a correct phase determination. J. Appl. Cryst. 26, 778–786.
Dorset, D. L., Tivol, W. F. & Turner, J. N. (1991). Electron crystallography at atomic resolution: ab initio structure analysis of copper perchlorophthalocyanine. Ultramicroscopy, 38, 41–45.
Dorset, D. L., Tivol, W. F. & Turner, J. N. (1992). Dynamical scattering and electron crystallography – ab initio structure analysis of copper perbromophthalocyanine. Acta Cryst. A48, 562–568.
Dorset, D. L. & Zemlin, F. (1990). Direct phase determination in electron crystallography: the crystal structure of an n-paraffin. Ultramicroscopy, 33, 227–236.
Dorset, D. L. & Zhang, W. P. (1991). Electron crystallography at atomic resolution: the structure of the odd-chain paraffin n-tritriacontane. J. Electron Microsc. Tech. 18, 142–147.
Dvoryankin, V. F. & Vainshtein, B. K. (1960). An electron diffraction study of thiourea. Sov. Phys. Crystallogr. 5, 564–574.
Dvoryankin, V. F. & Vainshtein, B. K. (1962). An electron diffraction study of the low-temperature ferroelectric form of thiourea. Sov. Phys. Crystallogr. 6, 765–772.
Eades, J. A. (1980). Another way to form zone axis patterns. Inst. Phys. Conf. Ser. 52, 9–12.
Eades, J. A., Shannon, M. D. & Buxton, B. F. (1983). Crystal symmetry from electron diffraction. In Scanning electron microscopy, 1983/III, pp. 1051–1060. Chicago: SEM Inc.
Erickson, H. P. & Klug, A. (1971). Measurements and compensation of defocusing and aberrations by Fourier processing of electron micrographs. Philos. Trans. R. Soc. London Ser. B, 261, 105–118.
Fan, H. F., Xiang, S. B., Li, F. H., Pan, Q., Uyeda, N. & Fujiyoshi, Y. (1991). Image resolution enhancement by combining information from electron diffraction pattern and micrograph. Ultramicroscopy, 36, 361–365.
Fan, H.-F., Zhong, Z.-Y., Zheng, C.-D. & Li, F.-H. (1985). Image processing in high-resolution electron microscopy using the direct method. I. Phase extension. Acta Cryst. A41, 163–165.
Frank, J. (1975). Averaging of low exposure electron micrographs of non-periodic objects. Ultramicroscopy, 1, 159–162.
Frank, J. (1980). The role of correlation techniques in computer image processing. In Computer processing of electron microscopy images, edited by P. W. Hawkes, pp. 187–222. Berlin: Springer-Verlag.
Fraser, H. L., Maher, D. M., Humphreys, C. J., Hetherington, C. J. D., Knoell, R. V. & Bean, J. C. (1985). The detection of local strains in strained superlattices. In Microscopy of semiconducting materials, pp. 1–5. London: Institute of Physics.
Fryer, J. R. (1993). Electron crystallography of small organic molecules. Microsc. Soc. Am. Bull. 23, 44–56.
Fujimoto, F. (1959). Dynamical theory of electron diffraction in Laue-case. I. General theory. J. Phys. Soc. Jpn, 14(11), 1158–1168.
Fujiwara, K. (1961). Relativistic dynamical theory of electron diffraction. J. Phys. Soc. Jpn, 16, 2226–2238.
Fukuhara, A. (1966). Many-ray approximations in the dynamical theory of electron diffraction. J. Phys. Soc. Jpn, 21, 2645–2662.
Gabor, D. (1949). Microscopy by reconstructed wavefronts. Proc. R. Soc. London Ser. A, 197, 454–487.
Gassmann, J. (1976). Improvement and extension of approximate phase sets in structure determination. In Crystallographic computing techniques, edited by F. R. Ahmed, pp. 144–154. Copenhagen: Munksgaard.
Gassmann, J. & Zechmeister, K. (1972). Limits of phase expansion in direct methods. Acta Cryst. A28, 270–280.
Germain, G., Main, P. & Woolfson, M. M. (1971). The application of phase relationships to complex structures. III. The optimum use of phase relationships. Acta Cryst. A27, 368–376.
Gilbert, P. F. C. (1972a). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. II. Direct methods. Proc. R. Soc. London Ser. B, 182, 89–102.
Gilbert, P. F. C. (1972b). Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–117.
Gilmore, C. J., Bricogne, G. & Bannister, C. (1990). A multisolution method of phase determination by combined maximization of entropy and likelihood. II. Application to small molecules. Acta Cryst. A46, 297–308.
Gilmore, C. J., Shankland, K. & Bricogne, G. (1993). Applications of the maximum entropy method to powder diffraction and electron crystallography. Proc. R. Soc. London Ser. A, 442, 97–111.
Gilmore, C. J., Shankland, K. & Fryer, J. R. (1992). The application of the maximum entropy method to electron microscopy data for purple membrane. Trans. Am. Crystallogr. Assoc. 28, 129–139.
Gilmore, C. J., Shankland, K. & Fryer, J. R. (1993). Phase extension in electron crystallography using the maximum entropy method and its application to two-dimensional purple membrane data from Halobacterium halobium. Ultramicroscopy, 49, 132–146.
Gjønnes, J. & Høier, R. (1971). The application of non-systematic many-beam dynamic effects to structure-factor determination. Acta Cryst. A27, 313–316.
Gjønnes, J. & Moodie, A. F. (1965). Extinction conditions in dynamic theory of electron diffraction patterns. Acta Cryst. 19, 65–67.
Glauber, R. & Schomaker, V. (1953). The theory of electron diffraction. Phys. Rev. 89, 667–670.
Goncharov, A. B. (1987). Integral geometry and 3D-reconstruction of arbitrarily oriented identical particles from their electron micrographs. Sov. Phys. Crystallogr. 32, 663–666.
Goncharov, A. B., Vainshtein, B. K., Ryskin, A. I. & Vagin, A. A. (1987). Three-dimensional reconstruction of arbitrarily oriented identical particles from their electron photomicrographs. Sov. Phys. Crystallogr. 32, 504–509.
Goodman, P. (1974). The role of upper layer interactions in electron diffraction. Nature (London), 251, 698–701.
Goodman, P. (1984a). A matrix basis for CBED pattern analysis. Acta Cryst. A40, 522–526.
Goodman, P. (1984b). A retabulation of the 80 layer groups for electron diffraction usage. Acta Cryst. A40, 633–642.
Goodman, P., McLean, J. D., Wilson, I. J. & Olsen, A. (1984). Optical microdiffraction and image analysis of subsymmetries in Nb2O5 tunnel structures. In Analytical electron microscopy–1984, pp. 130–134. San Francisco Press.
Goodman, P. & Miller, P. (1993). Reassessment of the symmetry of the 221 PbBiSrCaCuO structure using LACBED and high-resolution SAD: the relevance of Cowley's theory of disorder scattering to a real-space structural analysis. Ultramicroscopy, 52, 549–556.
Goodman, P., Miller, P., White, T. J. & Withers, R. L. (1992). Symmetry determination and Pb-site ordering analysis for the n = 1,2 PbxBi2 − xSr2Can − 1CunO4 + 2n + δ compounds by convergent-beam and selected-area electron diffraction. Acta Cryst. B48, 376–387.
Goodman, P. & Whitfield, H. J. (1980). The space group determination of GaS and Cu3As2S3I by convergent beam electron diffraction. Acta Cryst. A36, 219–228.
Gordon, R. (1974). A tutorial on ART (algebraic reconstruction techniques). IEEE Trans. Nucl. Sci. NS-21, 78–93.
Gordon, R., Bender, R. & Herman, G. T. (1970). Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29, 471–481.
Gordon, R. & Herman, G. T. (1971). Reconstruction of pictures from their projections. Commun. ACM, 14, 759–768.
Grzinic, G. (1985). Calculation of incommensurate diffraction intensities from disordered crystals. Philos. Mag. A, 52, 161–187.
Gunning, J. & Goodman, P. (1992). Reciprocity in electron diffraction. Acta Cryst. A48, 591–595.
Gurskaya, G. V., Lobanova, G. M. & Vainshtein, B. K. (1971). X-ray diffraction and electron-microscope study of hexagonal catalase crystal. Sov. Phys. Crystallogr. 16, 662–669.
Hashimoto, H., Endoh, H., Tanji, T., Ono, A. & Watanabe, E. (1977). Direct observation of fine structure within images of atoms in crystals by transmission electron microscopy. J. Phys. Soc. Jpn, 42, 1073–1074.
Hashimoto, H., Mannami, M. & Naiki, T. (1961). Dynamical theory of electron diffraction for the electron microscope image of crystal lattices. I. Image of single crystals. II. Image of superposed crystals (moiré pattern). Philos. Trans. R. Soc. London, 253, 459–516.
Hauptman, H. (1972). Crystal structure determination. The role of the cosine seminvariants. NY: Plenum Press.
Hauptman, H. (1993). A minimal principle in X-ray crystallography: starting in a small way. Proc. R. Soc. London Ser. A, 442, 3–12.
Hauptman, H. & Karle, J. (1953). Solution of the phase problem. I. The centrosymmetric crystal. American Crystallographic Association Monograph No. 3. Ann Arbor, MI: Edwards Brothers.
Havelka, W., Henderson, R., Heymann, J. A. W. & Oesterhelt, D. (1993). Projection structure of halorhodopsin from Halobacterium halobium at 6 Å resolution obtained by electron cryomicroscopy. J. Mol. Biol. 234, 837–846.
Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. & Downing, K. H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy. J. Mol. Biol. 213, 899–929.
Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. & Zemlin, F. (1986). Structure of purple membrane from Halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy, 19, 147–178.
Henderson, R. & Unwin, P. N. T. (1975). Three-dimensional model of purple membrane obtained by electron microscopy. Nature (London), 257, 28–32.
Herman, G. T. (1980). Image reconstruction from projection: the fundamentals of computerized tomography. New York: Academic Press.
Herrmann, K. H., Krahl, D. & Rust, H.-P. (1980). Low-dose image recording by TV techniques. In Electron microscopy at molecular dimensions, edited by W. Baumeister & W. Vogell, pp. 186–193. Berlin: Springer-Verlag.
Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. & Whelan, M. J. (1965). Electron microscopy of thin crystals. London: Butterworths.
Hoppe, W. (1971). Use of zone correction plate and other techniques for structure determination of aperiodic objects at atomic resolution using a conventional electron microscope. Philos. Trans. R. Soc. London Ser. B, 261, 71–94.
Hoppe, W., Bussler, P., Feltynowski, A., Hunsmann, N. & Hirt, A. (1973). Some experience with computerized image reconstruction methods. In Image processing and computer-aided design in electron optics, edited by R. W. Hawkes, pp. 92–126. London: Academic Press.
Hoppe, W. & Gassmann, J. (1968). Phase correction, a new method to solve partially known structures. Acta Cryst. B24, 97–107.
Hoppe, W. & Typke, D. (1979). Three-dimensional reconstruction of aperiodic objects in electron microscopy. In Advances in structure research by diffraction method. Oxford: Pergamon Press.
Horstmann, M. & Meyer, G. (1965). Messung der Elektronenbeugungsintensitaten polykristalliner Aluminium schichten bei tiefer Temperatur und Vergleich mit der dynamischen Theorie. Z. Phys. 182, 380–397.
Hovmöller, S., Sjögren, A., Farrants, G., Sundberg, M. & Marinder, B. O. (1984). Accurate atomic positions from electron microscopy. Nature (London), 311, 238–241.
Hu, H. H., Li, F. H. & Fan, H. F. (1992). Crystal structure determination of K2O·7Nb2O5 by combining high resolution electron microscopy and electron diffraction. Ultramicroscopy, 41, 387–397.
Hurley, A. C. & Moodie, A. F. (1980). The inversion of three-beam intensities for scalar scattering by a general centrosymmetric crystal. Acta Cryst. A36, 737–738.
International Tables for Crystallography (2005). Vol. A. Space-group symmetry, edited by Th. Hahn, 5th ed. Heidelberg: Springer.
International Tables for Crystallography (2004). Vol. C. Mathematical, physical and chemical tables, edited E. Prince, 3rd ed. Dordrecht: Kluwer Academic Publishers.
International Tables for X-ray Crystallography (1952). Vol. I. Symmetry groups. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Ishizuka, K., Miyazaki, M. & Uyeda, N. (1982). Improvement of electron microscope images by the direct phasing method. Acta Cryst. A38, 408–413.
Ishizuka, K. & Taftø, J. (1982). Kinematically allowed reflections caused by scattering via HOLZ. Proc. Electron Microsc. Soc. Am. pp. 688–689.
Jap, B. K. & Glaeser, R. M. (1980). The scattering of high-energy electrons. II. Quantitative validity domains of the single-scattering approximations for organic crystals. Acta Cryst. A36, 57–67.
Jap, B. K., Walian, P. J. & Gehring, K. (1991). Structural architecture of an outer membrane channel as determined by electron crystallography. Nature (London), 350, 167–170.
Johnson, A. W. S. (1972). Stacking faults in graphite. Acta Cryst. A28, 89–93.
Johnson, A. W. S. & Preston, A. R. (1994). Some notes on the selection of structural chirality by CBED. Ultramicroscopy, 55, 348–355.
Jones, P. M., Rackham, G. M. & Steeds, J. W. (1977). Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination. Proc. R. Soc. London Ser. A, 354, 197–222.
Kam, Z. (1980). Three-dimensional reconstruction of aperiodic objects. J. Theor. Biol. 82, 15–32.
Kambe, K. (1982). Visualization of Bloch waves of high energy electrons in high resolution electron microscopy. Ultramicroscopy, 10, 223–228.
Karle, J. & Hauptman, H. (1956). A theory of phase determination for the four types of non-centrosymmetric space groups [1P222], [2P22], [3P_{1}2], [3P_{2}2]. Acta Cryst. 9, 635–651.
Kirkland, E. J., Siegel, B. M., Uyeda, N. & Fujiyoshi, Y. (1980). Digital reconstruction of bright field phase contrast images from high resolution electron micrographs. Ultra-microscopy, 5, 479–503.
Kiselev, N. A., Lerner, F. Ya. & Livanova, N. B. (1971). Electron microscopy of muscle phosphorylase B. J. Mol. Biol. 62, 537–549.
Klug, A. & Berger, J. E. (1964). An optical method for the analysis of periodicities in electron micrographs and some observations on the mechanism of negative staining. J. Mol. Biol. 10, 565–569.
Klug, A. & DeRosier, D. J. (1966). Optical filtering of electron micrographs: reconstruction of one-sided images. Nature (London), 212, 29–32.
Kossel, W. & Möllenstedt, G. (1938). Electron interference in a convergent beam. Nature (London), 26, 660.
Kosykh, V. P., Pustovskikh, A. I., Kirichuk, V. S., Kühne, T., Orlova, E. V., Tsuprun, V. L. & Kiselev, N. A. (1983). Use of digital storage methods to recover images of monocrystalline layers of virus particles. Sov. Phys. Crystallogr. 28, 637–643.
Kühlbrandt, W., Wang, D. N. & Fujiyoshi, Y. (1994). Atomic model of plant light-harvesting complex by electron crystallography. Nature (London), 367, 614–621.
Kuwabara, S. (1978). Nearly aberration-free crystal images in high voltage electron microscopy. J. Electron Microsc. 27, 161–169.
Langer, R., Frank, J., Feltynowski, A. & Hoppe, W. (1970). Anwendung des Bilddifferenzverfahrens auf die Untersuchung von Strukturänderungen dünner Kohlefolien bei Elektronenbestrahlung. Ber. Bunsenges Phys. Chem. 74(11), 1120–1126.
Langs, D. A. & DeTitta, G. T. (1975). A flexible and rapid phase determination and refinement procedure. Acta Cryst. A31, S16.
Laue, M. von (1935). Die Fluoreszenzrontgenstrahlung von Einkristallen. Ann. Phys. (Leipzig), 23, 703–726.
Li, D. X. & Hovmöller, S. (1988). The crystal structure of Na3Nb12O31F determined by HREM and image processing. J. Solid State Chem. 73, 5–10.
Li, F. H. (1991). Crystal structures from high-resolution electron microscopy. In Electron crystallography of organic molecules, edited by J. R. Fryer & D. L. Dorset, pp. 153–167. Dordrecht: Kluwer Academic Publishers.
Liebman, G. (1955). A unified representation of magnetic electron lens properties. Proc. Phys. Soc. London Sect. B, 68, 737–745.
Liu, Y.-W., Fan, H.-F. & Zheng, C.-D. (1988). Image processing in high-resolution electron microscopy using the direct method. III. Structure-factor extrapolation. Acta Cryst. A44, 61–63.
Lobachev, A. N. & Vainshtein, B. K. (1961). An electron diffraction study of urea. Sov. Phys. Crystallogr. 6, 313–317.
Lynch, D. F. & Moodie, A. F. (1972). Numerical evaluation of low energy electron diffraction intensity. I. The perfect crystal with no upper layer lines and no absorption. Surf. Sci. 32, 422–438.
Lynch, D. F., Moodie, A. F. & O'Keefe, M. A. (1975). n-Beam lattice images. V. The use of the charge-density approximation in the interpretation of lattice images. Acta Cryst. A31, 300–307.
McLachlan, D. (1958). Crystal structure and information theory. Proc. Natl Acad. Sci. USA, 44, 948–956.
Mansfield, J. (1984). Convergent beam electron diffraction of alloy phases by the Bristol Group under the direction of John Steeds. Bristol: Adam Hilger.
Markham, R., Frey, S. & Hills, G. J. (1963). Methods for the enhancement of image detail and accentuation of structure in electron microscopy. Virology, 20, 88–102.
Matsuda, T., Tonomura, A. & Komada, T. (1978). Observation of lattice images with a field emission electron microscope. Jpn. J. Appl. Phys. 17, 2073–2074.
Mermin, N. D. (1992). The space groups of icosahedral quasicrystals and cubic, orthorhombic, monoclinic and triclinic crystals. Rev. Mod. Phys. 64, 3–49.
Mersereau, R. M. & Oppenheim, A. V. (1974). Digital reconstruction of multi-dimensional signals from their projections. Proc. IEEE, 62(10), 1319–1338.
Miyake, S. & Uyeda, R. (1950). An exception to Friedel's law in electron diffraction. Acta Cryst. 3, 314.
Mo, Y. D., Cheng, T. Z., Fan, H. F., Li, J. Q., Sha, B. D., Zheng, C. D., Li, F. H. & Zhao, Z. X. (1992). Structural features of the incommensurate modulation in the Pb-doped Bi-2223 high-Tc phase by defect method electron diffraction analysis. Supercond. Sci. Technol. 5, 69–72.
Moodie, A. F. (1965). Some structural implications of n-beam interactions. International Conference on Electron Diffraction and Crystal Defects, Melbourne, Australia, paper ID-1.
Moodie, A. F. (1972). Reciprocity and shape function in multiple scattering diagrams. Z. Naturforsch. Teil A, 27, 437–440.
Moodie, A. F. & Whitfield, H. J. (1984). CBED and HREM in the electron microscope. Ultramicroscopy, 13, 265–278.
Moss, B. & Dorset, D. L. (1982). Effect of crystal bending on direct phasing of electron diffraction data from cytosine. Acta Cryst. A38, 207–211.
Ogawa, T., Moriguchi, S., Isoda, S. & Kobayashi, T. (1994). Application of an imaging plate to electron crystallography at atomic resolution. Polymer, 35, 1132–1136.
Orlov, S. S. (1975). Theory of three-dimensional reconstruction. II. The recovery operator. Sov. Phys. Crystallogr. 20, 429–433.
Ottensmeyer, F. P., Andrews, J. W., Basett-Jones, D. P., Chan, A. S. & Hewitt, J. (1977). Signal to noise enhancement in dark field electron micrographs of vasopressin: filtering of arrays of images in reciprocal space. J. Microsc. 109, 256–268.
Pan, M. & Crozier, P. A. (1993). Quantitative imaging and diffraction of zeolites using a slow-scan CCD camera. Ultramicroscopy, 52, 487–498.
Pérez, S. & Chanzy, H. (1989). Electron crystallography of linear polysaccharides. J. Electron Microsc. Tech. 11, 280–285.
Picture Processing and Digital Filtering (1975). Edited by T. S. Huang. Berlin: Springer-Verlag.
Pinsker, Z. G. (1953). Electron diffraction. London: Butterworth.
Pinsker, Z. G., Zvyagin, B. B. & Imamov, R. M. (1981). Principal results of electron-diffraction structural investigations. Sov. Phys. Crystallogr. 26, 669–674.
Pogany, A. P. & Turner, P. S. (1968). Reciprocity in electron diffraction and microscopy. Acta Cryst. A24, 103–109.
Pond, R. C. & Vlachavas, D. S. (1983). Bicrystallography. Proc. R. Soc. London Ser. A, 386, 95–143.
Portier, R. & Gratias, D. (1981). Diffraction symmetries for elastic scattering. In Electron microscopy and analysis. Inst. Phys. Conf. Ser. No. 61, pp. 275–278. Bristol, London: Institute of Physics.
Radermacher, M., McEwen, B. & Frank, J. (1987). Three-dimensional reconstruction of asymmetrical object in standard and high voltage electron microscopy. Proc. Microscop. Soc. Canada, XII Annual Meet., pp. 4–5.
Radi, G. (1970). Complex lattice potentials in electron diffraction calculated for a number of crystals. Acta Cryst. A26, 41–56.
Radon, J. (1917). Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. (On the determination of functions from their integrals along certain manifolds). Ber. Verh. Saechs. Akad. Wiss. Leipzig Math. Phys. Kl. 69, 262–277.
Ramachandran, G. N. & Lakshminarayanan, A. V. (1971). Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. Proc. Natl Acad. Sci. USA, 68(9), 2236–2240.
Revol, J. F. (1991). Electron crystallography of radiation-sensitive polymer crystals. In Electron crystallography of organic molecules, edited by J. R. Fryer & D. L. Dorset, pp. 169–187. Dordrecht: Kluwer Academic Publishers.
Revol, J. F. & Manley, R. St. J. (1986). Lattice imaging in polyethylene single crystals. J. Mater. Sci. Lett. 5, 249–251.
Rez, P. (1978). In Electron diffraction 1927–1977, edited by P. J. Dobson, J. B. Pendry & C. J. Humphreys, pp. 61–67. Inst. Phys. Conf. Ser. No. 41. Bristol, London: Institute of Physics.
Rozenfeld, A. (1969). Picture processing by computer. New York: Academic Press.
Sayre, D. (1952). The squaring method: a new method for phase determination. Acta Cryst. 5, 60–65.
Sayre, D. (1980). Phase extension and refinement using convolutional and related equation systems. In Theory and practice of direct methods in crystallography, edited by M. F. C. Ladd & R. A. Palmer, pp. 271–286. NY: Plenum Press.
Scaringe, R. P. (1992). Crystallography in two dimensions: comparison of theory and experiment for molecular layers. Trans. Am. Crystallogr. Assoc. 28, 11–23.
Schapink, F. W., Forgany, S. K. E. & Buxton, B. F. (1983). The symmetry of convergent-beam electron diffraction patterns from bicrystals. Acta Cryst. A39, 805–813.
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20–29.
Schiske, P. (1968). Zur Frage der Bildrekonstruktion durch Fokusreihen. 1 Y Eur. Reg. Conf. Electron Microsc. Rome, 1, 145–146.
Schwartzman, A., Goodman, P. & Johnson, A. W. S. (1996). IUCr XVII Congress and General Assembly, Seattle, Washington, USA, August 8–16, Collected Abstracts, p. C-54, Abstract PS02.03.18.
Sha, B.-D., Fan, H.-F. & Li, F.-H. (1993). Correction for the dynamical electron diffraction effect in crystal structure analysis. Acta Cryst. A49, 877–880.
Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. (1984). Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953.
Shoemaker, V. & Glauber, R. (1952). The Born approximation in electron diffraction. Nature (London), 170, 290–291.
Spence, J. C. H., O'Keefe, M. A. & Kolar, H. (1977). Image interpretation in crystalline germanium. Optik (Stuttgart), 49, 307–323.
Spence, J. C. H. & Zuo, J. M. (1992). Electron microdiffraction. New York: Plenum Press.
Steeds, J. W. (1979). Convergent beam electron diffraction. In Introduction to analytical electron microscopy, edited by J. J. Hren, J. I. Goldstein & D. C. Joy, pp. 387–422. New York: Plenum.
Steeds, J. W. (1983). Developments in convergent beam electron diffraction. Report to the Commission on Electron Diffraction of the International Union of Crystallography.
Steeds, J. W. & Evans, N. S. (1980). Practical examples of point and space group determination in convergent beam diffraction. Proc. Electron Microsc. Soc. Am. pp. 188–191.
Steeds, J. W., Rackham, G. M. & Shannon, M. D. (1978). On the observation of dynamically forbidden lines in two and three dimensional electron diffraction. In Electron diffraction 1927–1977. Inst. Phys. Conf. Ser. No. 41, pp. 135–139.
Steeds, J. W. & Vincent, R. (1983). Use of high symmetry zone axes in electron diffraction in determining crystal point and space groups. J. Appl. Cryst. 16, 317–324.
Steinkilberg, M. & Schramm, H. J. (1980). Eine verbesserte Drehkorrelations Methode für die Strukturbestimmung biologischer Macromoleküle durch Mittelung elektronenmikroskopischer Bilder. Hoppe–Seyler's Z. Physiol. Chem. 361, 1363–1369.
Stereochemical Applications of Gas-Phase Electron Diffraction (1988). Part A, edited by I. Hargittai & M. Hargittai. New York: VCH.
Tanaka, M. (1994). Convergent-beam electron diffraction. Acta Cryst. A50, 261–286.
Tanaka, M., Saito, P., Ueno, K. & Harada, Y. (1980). Large angle convergent-beam electron diffraction. J. Electron. Microsc. 29, 408–412.
Tanaka, M., Sekii, H. & Nagasawa, T. (1983). Space group determination by dynamic extinction in convergent beam electron diffraction. Acta Cryst. A39, 825–837.
Tanaka, M. & Terauchi, M. (1985). Convergent-beam electron diffraction. Tokyo: JEOL Ltd.
Tanaka, M., Terauchi, M. & Tsuda, K. (1994). Convergent-beam electron diffraction III. Tokyo: JEOL–Maruzen.
Thon, F. (1966). On the defocusing dependence of phase contrast in electron microscopical images. Z. Naturforsch. Teil A, 21, 476–478.
Tivol, W. F., Dorset, D. L., McCourt, M. P. & Turner, J. N. (1993). Voltage-dependent effect on dynamical scattering and the electron diffraction structure analysis of organic crystals: copper perchlorophthalocyanine. Microsc. Soc. Am. Bull. 23, 91–98.
Tournaire, M. (1962). Recent developments of the matrical and semi-reciprocal formulation in the field of dynamical theory. J. Phys. Soc. Jpn, 17, Suppl. B11, 98–100.
Tsipursky, S. I. & Drits, V. A. (1977). Efficiency of electronometric intensity registration at electron diffraction structural studies. Izv. Akad. Nauk SSSR Ser. Fiz. 41, 2263–2271. (In Russian.)
Tsuji, M. (1989). Electron microscopy. In Comprehensive polymer science, Vol. 1. Polymer characterization, edited by C. Booth & C. Price, pp. 785–840. Oxford: Pergamon Press
Turner, P. S. & Cowley, J. M. (1969). The effects of n-beam dynamical diffraction on electron diffraction intensities from polycrystalline materials. Acta Cryst. A25, 475–481.
Unwin, P. N. T. & Henderson, R. (1975). Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425–440.
Uyeda, N., Kobayashi, T., Ishizuka, K. & Fujiyoshi, Y. (1978–1979). High voltage electron microscopy for image discrimination of constituent atoms in crystals and molecules. Chem. Scr. 14, 47–61.
Vainshtein, B. K. (1952). Dependence of electron scattering on the atomic number. Dokl. Akad. Nauk SSSR, 85, 1239–1242. (In Russian.)
Vainshtein, B. K. (1954). On the studies of crystal lattice potential by electron diffraction. Tr. Inst. Krist. Akad. Nauk SSSR, 9, 259–276. (In Russian.)
Vainshtein, B. K. (1955). Elektronograficheskoe issledovanie diketopiperazina. Zh. Fiz. Khim. 29, 327–344.
Vainshtein, B. K. (1956). Structure analysis by electron diffraction. Moscow: Akad. Sci. USSR. [English edition (1964): Oxford: Pergamon Press.]
Vainshtein, B. K. (1964). Structure analysis by electron diffraction. Oxford: Pergamon Press.
Vainshtein, B. K. (1971a). The synthesis of projecting functions. Sov. Phys. Dokl. 16, 66–69.
Vainshtein, B. K. (1971b). Finding the structure of objects from projections. Sov. Phys. Crystallogr. 15, 781–787.
Vainshtein, B. K. (1978). Electron microscopical analysis of the three-dimensional structure of biological macromolecules. In Advances in optical and electron microscopy, Vol. 7, edited by V. E. Cosslett & R. Barer, pp. 281–377. London: Academic Press.
Vainshtein, B. K., Barynin, V. V. & Gurskaya, G. V. (1968). The hexagonal crystalline structure of catalase and its molecular structure. Sov. Phys. Dokl. 13, 838–841.
Vainshtein, B. K., D'yakon, I. A. & Ablov, A. V. (1971). Electron diffraction determination of the structure of copper DL-alaninate. Sov. Phys. Dokl. 15, 645–647.
Vainshtein, B. K. & Goncharov, A. B. (1986a). Determination of the spatial orientation of arbitrarily arranged identical particles of unknown structure from their projections. Sov. Phys. Dokl. 287, 278–283.
Vainshtein, B. K. & Goncharov, A. B. (1986b). Proceedings of the 11th International Congress on Electron Microscopy, Kyoto, Vol. 1, pp. 459–460.
Vainshtein, B. K. & Klechkovskaya, V. V. (1993). Electron diffraction by Langmuir–Blodgett films. Proc. R. Soc. London Ser. A, 442, 73–84.
Vainshtein, B. K. & Orlov, S. S. (1972). Theory of the recovery of functions from their projections. Sov. Phys. Crystallogr. 17, 213–216.
Vainshtein, B. K. & Orlov, S. S. (1974). General theory of direct 3D reconstruction. Proceedings of International Workshop, Brookhaven National Laboratory, pp. 158–164.
Van Heel, M. (1984). Multivariate statistical classification of noisy images (randomly oriented biological macromolecules). Ultramicroscopy, 13, 165–184.
Vilkov, L. V., Mastryukov, V. S. & Sadova, N. I. (1978). Determination of geometrical structure of free molecules. Leningrad: Khimiya. (In Russian.)
Vincent, R. & Exelby, D. R. (1991). Structure of metastable Al–Ge phases determined from HOLZ Patterson transforms. Philos. Mag. Lett. 63, 31–38.
Vincent, R. & Exelby, D. R. (1993). Structure of a metastable Al–Ge phase determined from large angle CBED patterns. Philos. Mag. B, 68, 513–528.
Vincent, R. & Midgley, P. A. (1994). Double conical beam rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53, 271–282.
Voronova, A. A. & Vainshtein, B. K. (1958). An electron diffraction study of CuCl2·3Cu(OH)2. Sov. Phys. Crystallogr. 3, 445–451.
Watanabe, D., Uyeda, R. & Kogiso, M. (1968). An apparent variation of structure factors for electrons with accelerating voltage. An observation through Kikuchi patterns. Acta Cryst. A24, 249–250.
Wenk, H.-R., Downing, K. H., Ho, M.-S. & O'Keefe, M. A. (1992). 3D structure determination from electron-microscope images: electron crystallography of staurolite. Acta Cryst. A48, 700–716.
Wilson, A. J. C. (1949). The probability distribution of X-ray intensities. Acta Cryst. 2, 318–321.
Withers, R. L., Schmid, S. & Thompson, J. G. (1993). A composite modulated structure approach to the lanthanide oxide fluoride, uranium nitride fluoride and zirconium nitride fluoride solid-solution fields. Acta Cryst. B49, 941–951.
Wolff, P. M. de, Janssen, T. & Janner, A. (1981). The superspace groups for incommensurate crystal structures with a one-dimensional modulation. Acta Cryst. A37, 625–636.
Xiang, S.-B., Fan, H.-F., Wu, X.-J., Li, F.-H. & Pan, Q. (1990). Direct methods in superspace. II. The first application to an unknown incommensurate modulated structure. Acta Cryst. A46, 929–934.
Yao, J.-X. (1981). On the application of phase relationships to complex structures. XVIII. RANTAN – random MULTAN. Acta Cryst. A37, 642–644.
Zemlin, F., Reuber, E., Beckmann, E., Zeitler, E. & Dorset, D. L. (1985). Molecular resolution electron micrographs of monolamellar paraffin crystal. Science, 229, 461–462.
Zhukhlistov, A. P., Avilov, A. S., Ferraris, G., Zvyagin, B. B. & Plotnikov, V. P. (1997). Statistical distribution of hydrogen over three positions in the brucite Mg(OH)2 structure from electron diffractometry data. Crystallogr. Rep. 42, 774–777.
Zhukhlistov, A. P. & Zvyagin, B. B. (1998). Crystal structure of lizardite 1T from electron diffractometry data. Crystallogr. Rep. 43, 950–955.
Zuo, J. M., Gjønnes, K. & Spence, J. C. H. (1989). A FORTRAN source listing for simulating three-dimensional CBED patterns with absorption by the Bloch wave method. J. Electron Microsc. Tech. 12, 29–55.
Zvyagin, B. B. (1967). Electron-diffraction analysis of clay mineral structures. New York: Plenum.
Zvyagin, B. B., Vrublevskaya, Z. V., Zhukhlistov, A. P., Sidorenko, S. V., Soboleva, A. F. & Fedotov, A. F. (1979). High-voltage electron diffraction investigations of layered minerals. Moscow: Nauka. (In Russian).
Zvyagin, B. B., Zhukhlistov, A. P. & Plotnikov, A. P. (1996). Development of the electron diffractometry of minerals. Structural studies of crystals. (Coll. Works 75th Anniversary Acad. B. K. Vainshtein.) Nauka-Physmathlit, pp. 225–234. (In Russian).