International Tables for Crystallography (2006). Vol. B, ch. 2.5, pp. 276-345   | 1 | 2 |
https://doi.org/10.1107/97809553602060000558

Chapter 2.5. Electron diffraction and electron microscopy in structure determination

Chapter index

Abbe theory 2.5.2.6
Aberrations 2.5.2.6
Absorption coefficient
phenomenological 2.5.2.5
Absorption in electron diffraction 2.5.5.3
Algebraic method of reconstruction 2.5.6.6
Analytical electron microscope 2.5.3.1.1
Annular dark-field detector 2.5.2.7
Approximations
Bethe, second 2.5.2.4
Born, first-order 2.5.2.2
forward-scattering 2.5.2.4
phase-object 2.5.2.4
projected charge-density 2.5.2.7
projection 2.5.3.1.2
small-angle-scattering 2.5.2.2
two-beam 2.5.2.4
two-beam dynamical 2.5.7.8
weak-phase-object 2.5.2.7
Asymmetric images 2.5.5.5
Autocorrelation function 2.5.7.1
Automated Patterson-map search 2.5.7.1
Back-projection method of reconstruction 2.5.6.5
Bethe approximation
second 2.5.2.4
Bloch waves 2.5.2.2
Born approximation
first-order 2.5.2.2
Born series 2.5.2.2
Borrmann effect 2.5.2.5
Bragg condition, symmetric 2.5.3.2.1
Bright-field disc 2.5.3.2.3
Bright-field image intensity 2.5.5.2
Bulk plasmon excitation 2.5.2.2
CBED (convergent-beam electron diffraction) 2.5.2.10, 2.5.3.1.1
Centre of symmetry 2.5.3.3
Centrosymmetry
determination of 2.5.3.5.2
Convergent-beam electron diffraction (CBED) 2.5.2.10, 2.5.3.1.1
principal-axis pattern symmetries 2.5.3.4
space-group determination by 2.5.3
Convolution techniques 2.5.7.6
Cross-correlation function 2.5.5.5
Crystal defects 2.5.3.6
Crystal structure imaging 2.5.2.8
Dark-field discs 2.5.3.2.3
Defects 2.5.2.1
Defocus
optimal 2.5.5.2
Scherzer 2.5.2.7
Scherzer, conditions 2.5.5.2
Density modification 2.5.7.5
Detectors
annular dark-field 2.5.2.7
Diffraction beams
intensities of 2.5.4.3
Diffraction
dynamical 2.5.7.8
Diffraction point-group tables 2.5.3.3
Diffractometers, optical 2.5.5.2
Direct and reciprocity symmetries 2.5.3.2.1
Direct methods 2.5.7.1
Direct phase determination
in electron crystallography 2.5.7
Direct reconstruction, methods of 2.5.6.4
Discretization 2.5.6.3, 2.5.6.4
Disc symmetries, internal 2.5.3.5.1
Dispersion equations 2.5.2.2
Dynamical approximation, two-beam 2.5.7.8
Dynamical diffraction 2.5.7.8
theory 2.5.2.4
two-beam, formulae 2.5.2.5
Dynamical scattering effects 2.5.7.1
Dynamical theory 2.5.2.4
EDSA (electron-diffraction structure analysis) 2.5.4
Electromagnetic electron lenses 2.5.2.1, 2.5.2.6
Electron crystallography 2.5.7.1
direct phase determination 2.5.7
of proteins 2.5.7.2
three-dimensional structure determination by 2.5.7.3
Electron-diffraction data
three-dimensional 2.5.7.4
Electron-diffraction patterns
geometric theory of 2.5.4.4
polycrystal 2.5.4.2
single-crystal 2.5.4.2
texture 2.5.4.2, 2.5.7.8
Electron diffraction
sign conventions 2.5.2.3, 2.5.2.1
Electron-diffraction structure analysis (EDSA) 2.5.4
Electron lenses
electromagnetic 2.5.2.1, 2.5.2.6
Electron micrographs
Fourier transform of 2.5.7.7
phase information from 2.5.7.3
Electrons, interaction with matter 2.5.2.1
Envelope functions 2.5.2.7
Excitations
bulk plasmon 2.5.2.2
inner-shell 2.5.2.2
interband 2.5.2.2
intraband 2.5.2.2
Extinction conditions, real-space interpretation of 2.5.3.4
Extinction rules for symmetry elements 2.5.3.4
Field emission gun 2.5.2.10
Filtered image 2.5.5.2
Filtering
rotational 2.5.5.5
First-order Born approximation 2.5.2.2
Forward-scattering approximation 2.5.2.4
Fourier analysis
and filtration in reciprocal space 2.5.5.5
Fourier images 2.5.2.8
Fourier transformation
for reconstruction 2.5.6.7
Fourier transforms
of electron micrographs 2.5.7.7
Friedel's law 2.5.2.1
Geometric theory of electron-diffraction patterns 2.5.4.4
Glide line, projected 2.5.3.3
Glide planes, horizontal 2.5.3.3
GS (glide–screw) bands 2.5.3.1.1
HDD (high-dispersion diffraction) 2.5.4.1
HEED (high-energy electron diffraction) 2.5.4.1
Helical symmetry 2.5.6.3
High-dispersion diffraction (HDD) 2.5.4.1
High-energy electron diffraction (HEED) 2.5.4.1
Higher-order Laue zone (HOLZ) 2.5.3.5.1
High-resolution electron diffraction (HRED) 2.5.4.1
High-resolution electron microscopy (HREM) 2.5.4.4
Hologram, in-line 2.5.2.10
HOLZ (higher-order Laue zone) 2.5.3.5.1
Horizontal glide plane 2.5.3.3
Horizontal mirror plane 2.5.3.3
HRED (high-resolution electron diffraction) 2.5.4.1
HREM (high-resolution electron microscopy) 2.5.4.4
Image averaging in real space 2.5.5.5
Image enhancement 2.5.5.1, 2.5.5.5
Image intensity, bright-field 2.5.5.2
Image processing in transmission electron microscopy 2.5.5.1
Image reconstruction 2.5.5
Image resolution 2.5.2.9
Image restoration 2.5.5.1, 2.5.5.2
Images
asymmetric 2.5.5.5
filtered 2.5.5.2
with point symmetry 2.5.5.5
In-disc symmetries 2.5.3.2.3
Individual symmetry elements
observation of, in CBED patterns 2.5.3.3
Inelastic scattering 2.5.2.2
In-line hologram 2.5.2.10
Inner-shell excitations 2.5.2.2
Instrumental resolution 2.5.2.9
Intensities of diffraction beams 2.5.4.3
Interaction of electrons with matter 2.5.2.1
Interband excitation 2.5.2.2
Internal disc symmetries 2.5.3.5.1
Intraband excitation 2.5.2.2
Iteration method of reconstruction 2.5.6.6
Kinematical approximation 2.5.2.2, 2.5.2.4, 2.5.4.3, 2.5.7.8
Kinematical diffraction
formulae 2.5.2.5
intensities 2.5.2.5
Kinematical scattering 2.5.2.2
Known structural fragment, use of 2.5.7.1
LACBED (large-angle convergent-beam electron diffraction) 2.5.3.1.1
Large-angle convergent-beam electron diffraction (LACBED) 2.5.3.1.1
Laue circle patterns 2.5.3.5.1
Laue zones, higher-order 2.5.3.5.1
Least resolvable distance 2.5.2.9
LEED (low-energy electron diffraction) 2.5.4.1
Low-energy electron diffraction (LEED) 2.5.4.1
Maximum entropy 2.5.7.7
Maximum likelihood 2.5.7.7
MBD (microbeam diffraction) 2.5.4.1
Microanalysis 2.5.1, 2.5.2.1
Microbeam diffraction (MBD) 2.5.4.1
Mirror plane
horizontal 2.5.3.3
vertical 2.5.3.3
Mosaicity 2.5.4.2
Multislice 2.5.2.8
Non-classical crystallography 2.5.3.6
Oblique projections 2.5.6.3, 2.5.6.4
Observation plane 2.5.5.1
Optical diffractometer 2.5.5.2
Optimal defocus 2.5.5.2
Orthoaxial projection 2.5.6.2
Patterson map, automated search 2.5.7.1
Pendellösung 2.5.2.5
Periodic weak phase objects 2.5.5.5
Phase determination
direct, in electron crystallography 2.5.7
Phase information
from electron micrographs 2.5.7.3
Phase invariant sums 2.5.7.3
Phase-object approximation 2.5.2.4
Phenomenological absorption coefficients 2.5.2.5
Plasmons
bulk, excitation of 2.5.2.2
surface 2.5.2.2
Point-group determination 2.5.3.5.2
Point-group tables 2.5.3.3
Polycrystal electron-diffraction patterns 2.5.4.2
Polytype 2.5.3.6
Principal-axis convergent-beam electron-diffraction pattern symmetries 2.5.3.4
Probability density of samples for images 2.5.5.5
Projected charge-density approximation 2.5.2.7
Projected glide line 2.5.3.3
Projection(s)
oblique 2.5.6.3, 2.5.6.4
of symmetric objects 2.5.6.3
orthoaxial 2.5.6.2
tilt 2.5.7.2
Projection approximation 2.5.3.1.2
Proteins
electron crystallography of 2.5.7.2
Radiation damage 2.5.2.1
Radon operator 2.5.6.5
Real-space interpretation of extinction conditions 2.5.3.4
Reciprocity
relationship 2.5.2.6
Reconstruction
algebraic method 2.5.6.6
back-projection method 2.5.6.5
by Fourier transformation 2.5.6.7
direct, methods of 2.5.6.4
iteration method 2.5.6.6
three-dimensional 2.5.6
three-dimensional, general case 2.5.6.8
Reflection high-energy electron diffraction (RHEED) 2.5.4.1
Refractive index 2.5.2.2
Relativistic effects 2.5.2.2
Resolution
image 2.5.2.9
instrumental 2.5.2.9
RHEED (reflection high-energy electron diffraction) 2.5.4.1
Rocking microbeam diffraction (RMBD) 2.5.4.1
Rotational filtering 2.5.5.5
Rotation
X-fold 2.5.3.3
Roto-inversionary axes 2.5.3.3
SAED (selected-area electron diffraction) 2.5.2.10
Scanning microbeam diffraction (SMBD) 2.5.4.1
Scanning transmission electron microscope (STEM) 2.5.2.6
Scattering
inelastic 2.5.2.2
kinematical 2.5.2.2
thermal diffuse 2.5.2.2
Scattering matrix method 2.5.5.4
Scherzer defocus 2.5.2.7
conditions 2.5.5.2
Scherzer phase function 2.5.5.2
Schrödinger equation 2.5.2.2
Second Bethe approximation 2.5.2.4
Selected-area electron diffraction (SAED) 2.5.2.10
Sign conventions for electron diffraction 2.5.2.3, 2.5.2.1
Single-crystal electron-diffraction patterns 2.5.4.2
Small-angle scattering approximation 2.5.2.2
SMBD (scanning microbeam diffraction) 2.5.4.1
Space-group analyses of single crystals 2.5.3.5
Space-group determination by convergent-beam electron diffraction 2.5.3
Spherical viruses 2.5.6.3
STEM (scanning transmission electron microscope) 2.5.2.6
Surface plasmons 2.5.2.2
Symmetric Bragg condition 2.5.3.2.1
Symmetric objects, projections of 2.5.6.3
Symmetry elements
extinction rules for 2.5.3.4
individual, observation in CBED patterns 2.5.3.3
Symmetry
helical 2.5.6.3
TDS (thermal diffuse scattering) 2.5.2.2
TEM (transmission electron microscope) 2.5.2.6
Texture electron-diffraction patterns 2.5.4.2, 2.5.7.8
THEED (transmission high-energy electron diffraction) 2.5.4.1
Thermal diffuse scattering (TDS) 2.5.2.2
Thick crystals 2.5.5.4
Three-dimensional electron-diffraction data 2.5.7.4
Three-dimensional reconstruction 2.5.6
general case 2.5.6.8
Three-dimensional structure determination by electron crystallography 2.5.7.3
Through-focus series method 2.5.5.3
Tilt projections 2.5.7.2
Transfer function
of lens 2.5.2.6
Transmission electron microscope (TEM) 2.5.2.6
Transmission high-energy electron diffraction (THEED) 2.5.4.1
Twins 2.5.3.6
Two-beam approximation 2.5.2.4
Two-beam dynamical approximation 2.5.7.8
Two-beam dynamical diffraction formulae 2.5.2.5
Vertical mirror plane 2.5.3.3
Viruses, spherical 2.5.6.3
Wavelengths 2.5.2.1
Weak-phase-object approximation 2.5.2.7
Weak phase objects 2.5.5.2
periodic 2.5.5.5
Zone-axis patterns 2.5.3.1.2, 2.5.3.5.1