
�d, these expressions are equivalent to the ones (equations 7–9)
given by WMC, who, however, do not appear to have been aware of
the distinction between � and � and the possible consequences
thereof.

If, finally, w�1 for each atom is taken equal to its �2
j � �2, all j,

there is still further simplification.

�2�mi� � �2
i �

�w�s2
3 � s2

i ��
	�w�s2

3 � s2
i ��
2 , i � 1, 2

�2�dc� � �2
3 � �w���w�2 � 1��w�

cov�m1, m2� � �1�2 � �ws1s2�
	�w�s2

3 � s2
1��
	�w�s2

3 � s2
2��


cov�mi, dc� � �i�3 � �wsi�
	�w�s2

3 � s2
i ��
�w�

, i � 1, 2�

For the earlier, more general expressions for the components of
��T it is still necessary to find �ki�lj and �ki�l3 in terms of �ki�lj, with
�ki � �ski � ��rki � �rki�� � �ki � ��i� �

�
lwl��ki � �li���w�.

�ki�pj �
�

l� q
wlwq��ki � �li���pj � �qj���w�2

� ��ki � ��i����pj � ��j��
�ki�p3 �

�

l
wl��ki � �li��p3��w� � �ki�p3 � ��i��p3�

In the isotropic, ‘no-correlation’ case, for example, these reduce
to

�ki�pi � �wk�2
ki��w� � wp�2

pi��w�
� �w2�2

i ���w�2, k � p� i � 1, 2

�2
ki � �1� 2wk��w���2

ki � �w2�2
i ���w�2, i � 1, 2

�k3�p3 � �wp�2
p3��w�,

and

�2
k3 � �2

k3 � wk�2
k3��w� � �2

k3�1� wk��w���
Here the difference between the correct covariance values and the
values obtained on ignoring the variation in �r� may be important if
the number of defining atoms is small, say, 5 or 4 or, in the extreme,
3.

3.2.2.2. The standard uncertainty of the distance from an
atom to the plane

There are two cases, as has been pointed out, e.g., by Ito (1982).
(1) The atom (atom K) was not included in the specification of the

plane.

dK ��T��K � ���� � rk3 � �r3�
�dK � �K3 � sK1�1 � sK2�2 � �3

�2
dK
� �2

K3 � s2
K1�

2
1 � s2

K2�
2
2 � �2

3

� 2sK1sK2�1�2 � 2sK1�1�3 � 2sK2�2�3

� 2sK1�K3�1 � 2sK2�K3�2 � 2�K3�3�

In the isotropic, ‘no-correlation’ case the last three terms, i.e. the
terms in �i�K3, are all negligible or zero.

In either case the value for �2
K3 and the appropriate �i�j values

from the least-squares-plane calculation need to be inserted.
(2) Atom K was included in the specification of the plane. The

expression for �2
dK

remains the same, but the averages in it may be
importantly different.

For example, consider a plane defined by only three atoms, one of
overwhelmingly great w at (0, 0, 0), one at (1, 0, 0) and one at (0, 1,
0). The centroid is at (0, 0, 0) and we take K � 2, i.e. �d2 is the item
of interest. Of course, it is obvious without calculation that the
standard uncertainties vanish for the distances of the three atoms
from the plane they alone define; the purpose here is only to show,
in one case for one of the atoms, that the calculation gives the same
result, partly, it will be seen, because the change in orientation of
the plane is taken into account. If the only variation in the atom
positions is described by �2

23 � �2, one has s21 � 1, �3 � �2 � 0,
�1 � ��23, and �K3�1 � �2. The non-vanishing terms in the desired
variance are then

�2
d2
� �2

23 � s2
21�

2
1 � 2s21�23�1

� �1� 1� 2��2 � 0�

If, however, the problem concerns the same plane and a fourth atom
at position �1, 0, r43�, not included in the specification of the plane
and uncertain only in respect to r43 (which is arbitrary) with �2

43 �
�2 (the same mean-square variation in direction 3 as for atom 2) and
�43�23 � 0, the calculation for �2

d4
runs the same as before, except

for the third term:

�2
d4
� �1� 1� 0��2 � 2�2�

Extreme examples of this kind show clearly enough that variation
in the direction of the plane normal or in the normal component of
the centroid position will sometimes be important, the remarks to
the contrary by Shmueli (1981) and, for the centroid, the omission
by WMC notwithstanding. If only a few atoms are used to define the
plane (e.g., three or, as is often the case, a very few more), both the
covariance with the centroid position and uncertainty in the
direction of the normal are likely to be important. The uncertainty
in the normal may still be important, even if a goodly number of
atoms are used to define the plane, whenever the test atom lies near
or beyond the edge of the lateral domain defined by the other atoms.

3.2.3. The proper least-squares plane, with Gaussian
weights

If it is desired to weight the points to be fitted by a plane in the sense
of Gaussian least squares, then two items different from what we
have seen in the crystallographic literature have to be brought into
view: (1) the weights may be anisotropic and include interatomic
correlations, because the error matrix of the atom coordinates may
in general be anisotropic and include interatomic correlations; and
(2) it has to be considered that the atoms truly lie on a plane and that
their observed positions are to be adjusted to lie precisely on that
plane, whatever its precise position may turn out to be and no matter
what the direction, in response to the anisotropic weighting, of their
approach to the plane.

An important consequence of (1), the non-diagonal character of
the weight matrix, even with Cartesian coordinates, is that the
problem is no longer an ordinary eigenvalue problem as treated by
SWMB (1959),* not even if there is no interatomic correlation and

� A simple two-dimensional problem illustrates the point. A regular polygon of n
atoms is to define a ‘best’ line (always a central line). If the error matrix (the same
for each atom) is isotropic, the weighted sum of squares of deviations from the line
is independent of its orientation for n 	 2, i.e. the problem is a degenerate
eigenvalue problem, with two equal eigenvalues. However, if the error ellipsoids are
not isotropic and are all oriented radially or all tangentially (these are merely the two
orientations tried), the sum has n/2 equal minima for even n and 2 equal minima for
odd n, in the one-
 range of possible orientations of the line.

Possibly similar peculiarities might be imagined if the anisotropic weights were
more complicated (e.g., ‘star’ shaped) than can be described by a non-singular
matrix, or by any matrix. Such are of course excluded here.
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the anisotropy is the same for each atom. On this last case the
contrary remark in SWMB at the beginning of the footnote, p. 601,
is incorrect, and the treatments in terms of the eigenvector–
eigenvalue problem by Hamilton (1961, 1964, pp. 174–177) and
Ito (1981a)* evade us. At best the problem is still not a genuine
eigenvalue problem if the anisotropies of the atoms are not all alike.

Hypothesis (2), of perfect planarity, may be hard to swallow. It
has to be tested, and for any set of atoms the conclusion may be that
they probably do not lie on a plane. But if the hypothesis is
provisionally adopted (and it has to be decided beforehand which of
the following alternatives is to be followed), the adjusted positions
are obtained by moving the atoms onto the plane

(a) along paths normal to the plane, or
(b) along the proper paths of ‘least resistance’ – that is, paths

with, in general, both normal and lateral components differently
directed for each atom so as to minimize the appropriately weighted
quadratic form of differences between the observed and adjusted
coordinates. The lateral motions (and the anisotropic weights that
induce them) may change the relative weights of different atoms in
accordance with the orientation of the plane; change the
perpendicular distance of origin-to-plane; and change the orienta-
tion of the plane in ways that may at first give surprise.

Our first example of this has already been given.† A second,
which actually inspired our first, is to be found in Hamilton (1964;
example 5-8-1, p. 177), who discusses a rectangle of four points
with identical error ellipsoids elongated in the long direction of the
rectangle. The unweighted best line bisects the pattern along this
direction, but the weighted best line is parallel to the short direction,
if the elongation of the ellipsoids is sufficient. A third example (it is
severely specialized so that a precise result can be attained without
calculation) has three atoms ABC arranged like a C2��mm
molecule with bond angle 90�. The central atom, B, has over-
whelming isotropic weight; A and C have parallel extremely
elongated error ellipsoids, aligned parallel to the A—B bond. The
unweighted best line passes through B parallel to A � � �C; the
weighted best line passes through B and through C. Our last
example is of a plane defined by a number of atoms of which one
lies a considerable distance above the plane and at a distance from
the normal through the centroid, but with the downward semi-axis
of its extremely elongated prolate error ellipsoid intersecting that
normal before it intersects the plane. If this atom is moved at right
angles to the plane and further away from it, the centroid normal tips
toward the atom, whereas it would tip away if the atom’s weight
function were isotropic or if the calculation were the usual one and
in effect constrained the adjusted position of the atom to move at
right angles to the plane.

The lead notion here – that the observed points are to be adjusted
individually to fit a curve (surface) of required type exactly, rather
than that the curve should simply be constructed to fit the observed
points as well as possible in the sense of minimizing the weighted
sum of squares of the distances along some preordained direction
(perhaps normal to the plane, but perhaps as in ordinary curve fitting
parallel to the y axis) – we first learned from the book by Deming
(1943), Statistical Adjustment of Data, but it is to be found in
Whittaker & Robinson (1929), Arley & Buch (1950), Hamilton
(1964, our most used reference), and doubtless widely throughout
the least-squares literature. It has recently been strongly emphasized
by Lybanon (1984), who gives a number of modern references. It is
the only prescription that properly satisfies the least-squares

conditions, whereas (a) and other analogous prescriptions are
only arbitrary regressions, in (a) a normal regression onto the
plane.‡

We have explored the problem of least-squares adjustment of
observed positions subject to anisotropic weights with the help of
three Fortran programs, one for the straight line and two for the
plane. In the first plane program an approximate plane is derived,
coordinates are rotated as in WMC (1973), and the parameters of
the plane are adjusted and the atoms moved onto it, either normally
or in full accord with the least-squares condition, but in either case
subject to independent anisotropic weight matrices. The other plane
program, described in Appendix 3.2.1, proceeds somewhat more
directly, with the help of the method of Lagrange multipliers.
However, neither program has been brought to a satisfactory state
for the calculation of the variances and covariances of the derived
quantities.

3.2.3.1. Formulation and solution of the general Gaussian
plane

We conclude with an outline for a complete feasible solution,
including interatomic weight-matrix elements. Consider atoms at
observed vector positions rk , k � 1, � � � , n, designated in the
following equations by �, an n-by-3 array, with Rki � rki; the
corresponding adjusted positions denoted by the array �a; n
constraints (each adjusted position ra � a for ‘adjusted’ – must be
on the plane), and 3n� 3 adjustable parameters (3n �a components
and the 3 components of the vector b of reciprocal intercepts of the
plane), so that the problem has n� 3 degrees of freedom. The 3n-
by-3n weight matrix P may be anisotropic for the separate atoms,
and may include interatomic elements; it is symmetric in the sense
Pkilj � Pljki, but Pkilj will not in general be equal to Pkjli. The array �
denotes n Lagrange multipliers, one for each atom and unrelated to
the �’s of Section 3.2.2; m and d still represent the direction cosines
of the plane normal and the perpendicular origin-to-plane distance.

For a linear least-squares problem we know (see, e.g., Hamilton,
1964, p. 143) that the proper weight matrix is the reciprocal of the
atomic error matrix �P � M�1�;§ note that ‘M’ is unrelated to the
‘�’ of Section 3.2.2. The least-squares sum is now

S � ��� �a�P��� �a�,
and the augmented sum for applying the method of Lagrange
multipliers is

� � S�2���Ra�

� Ito observes that his method fails when there are only three points to define the
plane, his least-squares normal equations becoming singular. But the situation is
worse: his equations are singular for any number of points, if the points fit a plane
exactly.
� See first footnote.

� Ito’s second method (Ito, 1981b), of ‘substitution’, is also a regression, essentially
like the regression along z at fixed x and y used long ago by Clews & Cochran (1949,
p. 52) and like the regressions of y on fixed x that – despite the fact that both x and y
are afflicted with random errors – are commonly taught or practised in schools,
universities and laboratories nearly 200 years after Gauss, to the extent that Deming,
Lybanon and other followers of Gauss have so far had rather little influence.
Kalantar’s (1987) short note is a welcome but still rare exception.
� Is this statement firm for a nonlinear problem? We use it, assuming that at
convergence the problem has become effectively linear. But in fact this will depend
on how great the nonlinearity is, in comparison with the random errors (variances)
that eventually have to be considered. Another caveat may be in order in regard to
our limited knowledge of Gauss’s second derivation of the method of least squares,
the one he preferred [see Whittaker & Robinson (1929)] and which establishes for a
linear system that the best linear combination of a set of observations, afflicted by
random errors, for estimating any arbitrary derived quantity – best in the sense of
being unbiased and having minimal mean-square error – is given by the method of
least squares with the weight matrix set equal to the inverse error matrix of the
observations. Hamilton, and Whittaker & Robinson, prove this only for the case that
the derived parameters are not constrained, whereas here they are. We believe,
however, that the best choice of weights is a question concerning only the
observations, and that it cannot be affected by the method used for minimizing S
subject to any constraints, whether by eliminating some of the parameters by
invoking the constraints directly or by the use of Lagrange multipliers.
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Here the summation brackets ��� � ��� have been replaced by matrix
products, but the simplified notation is not matrix notation. It has to
be regarded as only a useful mnemonic in which all the indices and
their clutter have been suppressed in view of their inconveniently
large number for some of the arrays. If the dimensions of each are
kept in mind, it is easy to recall the indices, and if the indices are
resupplied at any point, it is not difficult to discover what is really
meant by any of the expressions or whether evaluations have to be
executed in a particular order.

The conditions to be satisfied are

0 � ��
�a

� P��� �a� ���,

0 � ��
�

� ��a,

1 � ��a�

That the partial derivatives of S�2 should be represented by P���
�a� depends upon the above-mentioned symmetry of P. Note that
each of the n unit elements of 1 expresses the condition that its ra
should indeed lie on the plane, and that �� is just the same as ��.
The perpendicular origin-to-plane distance and the direction cosines
of the plane normal are d2 � 1��T� and � � ��

���������
�T�

�
.

On multiplication by M the first condition solves for �a, and that
expression combined separately with the second condition and with
the third gives highly nonlinear equations (there is further mention
of this nonlinearity in Appendix 3.2.1) that have to be solved for �
and �:

�a � ��M�� � ��M��

0 � � � ��M������

0 � � � ��M���� �1� ����
The best way of handling these equations, at least if it is desired

to find their solutions both for �a, �, and � and for the error matrix
of these derived quantities in terms of the error matrix for �, seems
to be to find an approximate solution by one means or another, to
make sure that it is the desired solution, if (as may be) there is
ambiguity, and to shift the origin to a point far enough from the
plane and close enough to the centroid normal to avoid the
difficulties discussed by SWMB. Then linearize the first and second
equations by differentiation and solve the results first iteratively to
fit the current residuals �0 and �0 and then for nominally
infinitesimal increments �� and ��. In effect, one deals with
equations �� � �, where � is the �n� 3� � �n� 3� matrix of
coefficients of the following set of equations, � is the �n� 3�-
dimensional vector of increments �� and ��, and � is the vector
either of the first terms or of the second terms on the right-hand side
of the equations.

��M����� �M����M�� ���� � ��0 ����

�M��� �M�� ����� ��M���� � ��0 � ����

When � becomes the vector � of errors in � and � as induced by
errors � � �� in the measured atom positions, these equations
become, in proper matrix notation, �� � ��, with solution
� � ��1��, where � is the �n� 3�-dimensional vector of
components, first of � then of �. The covariance matrix ��T ,
from which all the covariances of �, �a, and � (including for the
latter any atoms that were not included for the plane) can be
derived, is then given by

��T � ��1���T�T���1�T �

This is not as simple as the familiar expression for propagation of
errors for a least-squares problem solved without the use of

Lagrange multipliers, i.e. ��T � 	�1, where 	 is the matrix of the
usual normal equations, both because 	 � 	T is no longer valid and
because the middle factor ���T�T is no longer equal to 	�1.

It is easy to verify that � consists of a set of coefficients for
combining the n row vectors of M�, in the expression for �a, into
corrections to � such that each adjusted position lies exactly on the
plane:

��a � ��� �M���M���1�1� ���
� ��� 1� �� � 1�

At the same time one can see how the lateral shifts occur in response
to the anisotropy of M, especially if, now, only the anisotropic case
without interatomic correlations is considered. For atom k write � in
terms of its components along the principal axes of �k , associated
with the eigenvalues �,� and �; the shifts are then proportional to
���b2

�, ���b2
� and ���b2

� , each along its principal axis, and the
sums of the contributions of these shift components to the total
displacement along the plane normal or along either of two
orthogonal directions in the plane can readily be visualized. In
effect �k is the compliance matrix for these shifts of atom k.
Similarly, it can be seen that in the isotropic case with interatomic
correlations a pair of equally weighted atoms located, for example,
at some distance apart and at about the same distance from the
plane, will have different shifts (and different influences on d and
�) depending on whether the covariance between the errors in the
perpendicular components of their observed positions relative to the
plane is small, or, if large, whether it is positive or is negative. If the
covariance is large and positive, the adjusted positions will both be
pulled toward the plane, strongly resisting, however, the apparent
necessity that both reach the plane by moving by different amounts;
in consequence, there will be a strong tendency for the plane to tilt
toward the more distant atom, and possibly even away from the
nearer one. But if the covariance is large and negative, the situation
is reversed: the more distant atom can readily move more than the
nearer one, while it is very difficult to move them together; the
upshot is then that the plane will move to meet the original midpoint
of the two atoms while they tilt about that midpoint to accommodate
the plane.

It is attractive to solve our problem with the ‘normal’ formulation
of the plane, �� � d, and so directly avoid the problems that arise
for d � 0. The solution in terms of the reciprocal intercepts � has
been given first, however, because reducing by two (d and a
Lagrange multiplier) the number of parameters to be solved for may
more than make up for the nuisance of having to move the origin.
The solution in terms of d follows.

The augmented variation function is now

� � ��� �a�P��� �a��2�����a � d1� � ����2,

the term in the new Lagrange multiplier, �, and the term in d1
having been added to the previous expression. The 1, an n-vector of
1’s, is needed to express the presence of n terms in the � sum. There
are then five equations to be satisfied – actually n� 1� 3n� 3�
1 � 4n� 5 ordinary equations – in the 3n �a components, the n
�’s, the 3 � components, �, and d � 4n� 5 unknowns in all, as
required. These equations are as follows:

�Ra � d1

�� � 1

0 � � �

�a

� �

� P��� �a� ���

0 � �

�
� ���a � ��
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0 � �

d
� �1�

As before, multiply the third equation by M and solve for �a. Then
substitute the result into the first and fourth equations to obtain

����M�� � d1,

�� � 1,

����M�� � ��,

�1 � 0

as the n� 5 mostly nonlinear equations to be solved for �, �, d and
� by linearizing (differentiation), solving for increments, and
iterating, in the pattern described more fully above. An approximate
solution for � and d has first to be obtained somehow, perhaps by
the method of SWMB (with isotropic uncorrelated weights),
checked for suitability, and extended to a full complement of first
approximations by

� � ��M���1�d1����
� �������M��,

which readily follow from the previous equations. As in the
‘intercepts’ solution the linearized expression for the increments in
�,�, d and � can be used together with the equation for �a to
obtain all the covariances needed in the treatment described in
Section 3.2.2.

3.2.3.2. Concluding remarks

Proper tests of statistical significance of this or that aspect of a
least-squares plane can be made if the plane has been based on a
proper weight matrix as discussed in Section 3.2.3; if it can be
agreed that the random errors of observation are normally
distributed; and if an agreeable test (null) hypothesis can be
formulated. For example, one may ask for the probability that a
degree of fit of the observed positions to the least-squares plane at
least as poor as the fit that was found might occur if the atoms in
truth lie precisely on a plane. The �2 test answers this question: a
table of probabilities displayed as a function of �2 and � provides
the answer. Here �2 is just our minimized

S � ��MPM�� � ��M��,

and

� � nobservations � nadjusted parameters � nconstraints

� 3n� �n� 3� � n � n� 3,

is the number of degrees of freedom for the problem of the plane
(erroneously cited in at least one widely used crystallographic
system of programs as 3n� 3). There will not usually be any reason
to believe that the atoms are exactly coplanar in any case;
nevertheless, this test may well give a satisfying indication of
whether or not the atoms are, in the investigator’s judgment,
essentially coplanar. It must be emphasized that �2 as calculated in
Section 3.2.3 will include proper allowance for uncertainties in the
d and orientation of the plane with greater reliability than the
estimates of Section 3.2.2, which are based on nominally arbitrary
weights. Both, however, will allow for the large variations in d and
tilt that can arise in either case if n is small. Some of the earlier, less
complete discussions of this problem have been mentioned in
Section 3.2.2.

Among the problems not considered here are ones of fitting more
than one plane to a set of observed positions, e.g. of two planes fitted
to three sets of atoms associated, respectively, with the first plane,
the second plane, and both planes, and of the angle between the two
planes. For the atoms common to both planes there will be a

fundamental point of difference between existing programs (in
which, in effect, the positions of the atoms in common are
inconsistently adjusted to one position on the first plane and, in
general, a different position on the second) and what we would
advocate as the proper procedure of requiring the adjusted positions
of such atoms to lie on the line of intersection of the two planes. As
to the dihedral angle there is a difficulty, noted by WMC (1973, p.
2705), that the usual formulation of �2��0� in terms of the cosine of
the dihedral angle reduces to 0/0 at �0 � 0. However, this variance
is obviously well defined if the plane normals and their covariances
are well defined. The essential difficulty lies with the ambiguity in
the direction of the line of intersection of the planes in the limit of
zero dihedral angle. For the torsion angle about a line defined by
two atoms, there should be no such difficulty. It seems likely that for
the two-plane problem proposed above, the issue that decides
whether the dihedral angle will behave like the standard dihedral
angle or, instead, like the torsion angle, will be found to be whether
or not two or more atoms are common to both planes.

All that we have tried to bring out about the covariances of
derived quantities involving the plane requires that the covariances
of the experimental atom positions (reduced in our formulations to
Cartesian coordinates) be included. However, such covariances of
derived quantities are often not available in practice, and are usually
left unused even if they are. The need to use the covariances, not just
the variances, has been obvious from the beginning. It has been
emphasized in another context by Schomaker & Marsh (1983) and
much more strongly and generally by Waser (1973), whose
pleading seems to have been generally ignored, by now, for about
thirty years.

Appendix 3.2.1.

Consider n atoms at observed vector positions � (expressed in
Cartesians), n constraints (each adjusted position �a � a for
‘adjusted’ – must be on the plane) and 3n� 3 adjustable parameters
(3n �a components and the 3 components of the vector � of
reciprocal intercepts of the plane), so that the problem has n� 3
degrees of freedom. The weight matrices 
 may be differently
anisotropic for each atom, but there are no interatomic correlations.
As before, square brackets, ‘�� � ��’, represent the Gaussian sum over
all atoms, usually suppressing the atom indices. We also write �, not
the � of Section 3.2.2, for the Lagrange multipliers (one for each
atom); � for the direction cosines of the plane normal; and d for the
perpendicular origin-to-plane distance.

As before, 
k is the reciprocal of the atomic error matrix: 
k �
��1

k (correspondingly, P � M�1� but ‘�’ is no longer the ‘�’ of
Section 3.2.2. The appropriate least-squares sum is

S � ���� �a�T
��� �a��
and the augmented sum for applying the method of Lagrange
multipliers is

� � S�2� ���T�a��
� is to be minimized with respect to variations of the adjusted atom
positions �ka and plane reciprocal intercepts bi, leading to the
equations

0 � ��
�T

a

� 
��� �a� � �� and

0 � ��
�T � ���a�,

subject to the plane conditions �T�a � 1, each atom, with
d2 � 1���T��, � � ��

���������
�T�

�
. These equations are nonlinear.
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