International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B, ch. 3.3, p. 369   | 1 | 2 |

Figure 3.3.1.1 

R. Diamonda*

aMRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England
Correspondence e-mail: rd10@cam.ac.uk

[Figure 3.3.1.1]
Figure 3.3.1.1

The relationship between display-space coordinates (X, Y, Z, W) and picture-space coordinates (x, y, z, w) derived from them by the window transformation, U. (a) Display space (in X, Z projection) showing a square object P, Q, R, S for display viewed from the position (C, D, E, V). The bold trapezium is the window (volume) and the bold line is the viewport portion of the screen. The points P, Q, R and S must be plotted at p, q, r and s to give the correct impression of the object. (b) Picture space (in x, z projection). The window is mapped to a rectangle and all sight lines are parallel to the z axis, but the object P, Q, R, S is no longer square. The distribution of p, q, r and s is identical in the two cases. Note that [z/w] values are not linear on [Z/W], and that the origin of picture space arises at the midpoint of the near clipping plane, regardless of the location of the origin of display space. The figure is accurately to scale for coincident viewport positions. The words `Left clipping plane', if part of the scene in display space, would currently be obscured, but would come into view if the eye moved to the right, increasing C, as the left clipping plane would pivot about the point [L/V] in the screen plane.